This paper presents the first of a series of studies on the seismic design of high-rise towers for cablestayed bridges under strong earthquakes.One practical cable-stayed bridge with a 730 m long main span and two hig...This paper presents the first of a series of studies on the seismic design of high-rise towers for cablestayed bridges under strong earthquakes.One practical cable-stayed bridge with a 730 m long main span and two high-rise towers over 200 m in height was selected for this study.The preliminary results show that compared with piers,the tower is more vulnerable to pulse-like earthquakes,and it may develop plasticity at certain locations.In addition,viscous dampers may not have the same effect during pulse-like earthquakes as they do under site-specific earthquakes.Hence,reoptimization of damper parameters or reconsideration of other energy dissipation devices will be needed if strong earthquakes are likely to occur.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the exis...With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.展开更多
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab...To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.展开更多
A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic perfor...A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases.展开更多
An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are ...An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are the most significant factors for wind load computations.Wind tunnel tests and computational fluid dynamics(CFD)are the most appropriate methods to estimate these parameters.While wind tunnel tests are generally preferred in practice,they require dedicated facilities and personnel,and can be expensive if multiple configurations of tower panels and antennas need to be tested under various wind directions(e.g.,fragility curve development for system resilience analysis).This paper provides a simple,robust,and easily accessible CFD protocol with widespread applicability,offering a practical solution in situations where wind tunnel testing is not feasible,such as complex tower configurations or cases where the cost of running experiments for all the tower-antennas configurations is prohibitively high.Different turbulence models,structural and fluid boundary conditions and mesh types are tested to provide a streamlined CFD modeling strategy that shows good convergence and balances accuracy,computational time,and robustness.The protocol is calibrated and validated with experimental studies available in the literature.To demonstrate the capabilities of the protocol,three lattice tower panels and antennas with different configurations are analyzed as examples.The protocol successfully estimates the drag and lateral wind loads and their coefficients under different wind directions.Noticeable differences are observed between the esti-mated wind loads with this protocol and those computed by a simple linear superposition used in most practical applications,indicating the importance of tower-antenna interaction.Also,as expected,the wind loads recom-mended by design codes overestimate the simulated results.More importantly,the telecommunication design codes inadequately identify the most favorable wind directions that are associated with the lowest wind loads,while the results of the proposed protocol align with observations from experimental studies.This information may be used to select the tower orientation before construction.The findings of this study are of importance for the telecommunication industry,which seeks reliable results with minimal computational efforts.In addition,it enhances the fragility analysis of telecommunication towers under strong winds,and the portfolio risk and resilience assessment of telecommunication systems.展开更多
"Problem of Towers of Hanoi",用递归的方法能很容易地解决问题,不用递归的方法将会是比较困难,因为随着参与盘子数的不断增多,计算时间和复杂度将会不断增多。运用仿真软件能清晰地勾勒出每个盘子的移动轨迹并给出详细的移..."Problem of Towers of Hanoi",用递归的方法能很容易地解决问题,不用递归的方法将会是比较困难,因为随着参与盘子数的不断增多,计算时间和复杂度将会不断增多。运用仿真软件能清晰地勾勒出每个盘子的移动轨迹并给出详细的移动步骤,这将会使此问题能更形象、更直观的解决。展开更多
The wind energy industry has been growing rapidly during the past decades.Along with this growth,engineering problems have gradually emerged in the wind power industry,including those related to the structural reliabi...The wind energy industry has been growing rapidly during the past decades.Along with this growth,engineering problems have gradually emerged in the wind power industry,including those related to the structural reliability of turbine towers.This study proposes a rapid seismic analysis methodology for existing wind turbine tower structures.The method is demonstrated and validated using a case study on a 1.5 MW tubular steel wind turbine tower.Three finite element(FE)models are developed first.Field tests are conducted to obtain the turbine tower’s vibrational characteristics.The tests include(1) remotely measuring the tower vibration frequencies using a long range laser Doppler Vibrometer and(2) monitoring the tower structural vibration by mounting accelerometers along the height of the tubular structure.In-situ measurements are used to validate and update the FE models of the wind turbine tower.With the updated FE model that represents the practical structural conditions,seismic analyses are performed to study the structural failure,which is defined by the steel yielding of the tubular tower.This research is anticipated to benefit the management of the increasing number of wind energy converters by providing an understanding of the seismic assessment of existing tubular steel wind turbine towers.展开更多
This article reports the findings on the adverse effect of the crosswind on the performance of natural draft cooling towers through numerical computation with the k-epsilon eddy-viscosity turbulence model. It is obser...This article reports the findings on the adverse effect of the crosswind on the performance of natural draft cooling towers through numerical computation with the k-epsilon eddy-viscosity turbulence model. It is observed here that the cause of the adverse effect of the crosswind on the cooling towers call be attributed to the around flow effect which destroys the radial inflow into the cooling towers when the wind is absent. Hence, a significant deterioration in the heat transfer from the heat exchangers at lateral sides occurs.展开更多
Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond de...Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond design,especially for high-rise buildings.In this study,steel high-rise buildings using either square concrete-filled-tube(CFT) columns or steel tube columns are designed.A detailed three-dimensional(3 D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse.The effectiveness is verified by both component tests and a full-scale shaking table test.The collapse margin,which is defined as the ratio of PGA between the collapse level to the design major earthquake level(Level 2),is quantified by a series of numerical simulations using incremental dynamic analyses(IDA).The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20.The significant variation in the collapse margin was caused by the different characteristics of the input ground motions.The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns,exhibiting only 57% of the collapse margin of the baseline building.The influence of reducing the height of the first story was quite significant.The shortened first story not only enlarged the collapse margin by 20%,but also changed the collapse mode.展开更多
In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a ...In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.展开更多
To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element i...To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types.展开更多
This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions betwe...This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.展开更多
Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Sc...Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Science and Technology (MOST) of China in 2012 to meet the research requirements of fire safety in high-rise buildings. This paper reviews the current state of art of research on fire dynamics of high-rise buildings, including the up-to-date progress of this project. The following three subjects on fire dynamics of high-rise buildings are addressed in this review: the ejected flame and fire plume behavior over facade out of the compartment window, the flame spread behavior over facade thermal insulation materiMs, and the buoyancy-driven smoke transportation characteristics along long vertical channels in high-rise buildings. Prospective future works are discussed and summarized.展开更多
Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, th...Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, the potential for damage and loss of lives may not be known. In this paper, the performance of a typical high-rise building with a thick transfer plate (TP), which is one type of building structure commonly found in Hong Kong, is assessed against both earthquake and wind hazards. Seismic- and wind-resistant performance objectives are first reviewed based on relevant codes and design guidelines for high-rise buildings. After a brief introduction of wind-resistant design of the building, various methodologies, including equivalent static load analysis (ESLA), response spectrum analysis (RSA), pushover analysis (POA), linear and nonlinear time-history analysis (LTHA and NTHA), are employed to assess the seismic performance of the building when subjected to frequent earthquakes, design based earthquakes and maximum credible earthquakes. The effects of design wind and seismic action with a common 50-year return period are also compared. The results indicate that most performance objectives can be satisfied by the building, but there are some objectives, such as inter-story drift ratio, that cannot be achieved when subjected to the frequent earthquakes. It is concluded that in addition to wind, seismic action may need to be explicitly considered in the design of buildings in regions of moderate seismicity.展开更多
It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grou...It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.展开更多
For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise...For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response.展开更多
Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground ...Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground response wave (named LS-R wave) of a soft soil site with deep deposit, taking long-period bedrock seismic record as input, was calculated by wave propagation method. After that, a TOMAKOMAI station long-period seismic record from the Tokachi-Oki earthquake and conventional E1-Centro wave were also chosen. Spectrum characteristics of these waves were analyzed and compared. Then, a series of shaking table tests were performed on a 1:50 scale super high-rise structural model under these seismic waves. Furthermore, numerical simulation of the prototype structure under these excitations was conducted, and structure damages under different intensive ground motions were discussed. The results show that: 1) Spectrum characteristics of ground response wave are significantly influenced by soft soil site with deep deposit, and the predominant period has an increasing trend. 2) The maximum acceleration amplification factor of the structure under the TOM wave is two times that under the E1-Centro wave; while the maximum displacement response of the structure under the TOM wave is 4.4 times that under the E1-Centro wave. Long-period ground motions show greater influences on displacement responses than acceleration responses for super high-rise building structures. 3) Most inelastic damage occurs at the upper 1/3 part of the super high-rise building when subjected to long-period ground motions.展开更多
The structure and organization of the extreme-rain-producing deep convection towers and their roles in the formation of a southwest vortex(SWV)event are studied using the intensified surface rainfall observations,weat...The structure and organization of the extreme-rain-producing deep convection towers and their roles in the formation of a southwest vortex(SWV)event are studied using the intensified surface rainfall observations,weather radar data and numerical simulations from a high-resolution convection-allowing model.The deep convection towers occurred prior to the emergence of SWV and throughout its onset and development stages.They largely resemble the vortical hot tower(VHT)commonly seen in typhoons or hurricanes and are thus considered as a special type of VHT(sVHT).Each sVHT presented a vorticity dipole structure,with the upward motion not superpose the positive vorticity.A positive feedback process in the SWV helped the organization of sVHTs,which in turn strengthened the initial disturbance and development of SWV.The meso-γ-scale large-value areas of positive relative vorticity in the mid-toupper troposphere were largely induced by the diabatic heating and tilting.The strong mid-level convergence was attributed to the mid-level vortex enhancement.The low-level vortex intensification was mainly due to low-level convergence and the stretching of upward flow.The meso-α-scale large-value areas of positive relative vorticity in the low-level could expand up to about 400 hPa,and gradually weakened with time and height due to the decaying low-level convergence and vertical stretching in the matured SWV.As the SWV matured,two secondary circulations were formed,with a weaker mean radial inflow than the outflow and elevated to 300-400 hPa.展开更多
Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formula...Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.展开更多
基金This research is supported by the National Science Foundation of China(Grant No.51008225)by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry in China.
文摘This paper presents the first of a series of studies on the seismic design of high-rise towers for cablestayed bridges under strong earthquakes.One practical cable-stayed bridge with a 730 m long main span and two high-rise towers over 200 m in height was selected for this study.The preliminary results show that compared with piers,the tower is more vulnerable to pulse-like earthquakes,and it may develop plasticity at certain locations.In addition,viscous dampers may not have the same effect during pulse-like earthquakes as they do under site-specific earthquakes.Hence,reoptimization of damper parameters or reconsideration of other energy dissipation devices will be needed if strong earthquakes are likely to occur.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金the grant fromthe Key Technologies Research and Development Program(Grant No.2021YFF0602005)the National Natural Science Foundation of China(No.51678135)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033).
文摘With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.
基金supported by the Natural Science Foundation of China(52122811)。
文摘To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.
文摘A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases.
基金support from the Pennsylvania Department of Community&Economic Development(DCED)through grant PIT-19-02 and of Lehigh University through the“Research Futures:Major Program Development”the“Research Fu-tures:Special Seed Funding Opportunity”grants are gratefully acknowl-edged.
文摘An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are the most significant factors for wind load computations.Wind tunnel tests and computational fluid dynamics(CFD)are the most appropriate methods to estimate these parameters.While wind tunnel tests are generally preferred in practice,they require dedicated facilities and personnel,and can be expensive if multiple configurations of tower panels and antennas need to be tested under various wind directions(e.g.,fragility curve development for system resilience analysis).This paper provides a simple,robust,and easily accessible CFD protocol with widespread applicability,offering a practical solution in situations where wind tunnel testing is not feasible,such as complex tower configurations or cases where the cost of running experiments for all the tower-antennas configurations is prohibitively high.Different turbulence models,structural and fluid boundary conditions and mesh types are tested to provide a streamlined CFD modeling strategy that shows good convergence and balances accuracy,computational time,and robustness.The protocol is calibrated and validated with experimental studies available in the literature.To demonstrate the capabilities of the protocol,three lattice tower panels and antennas with different configurations are analyzed as examples.The protocol successfully estimates the drag and lateral wind loads and their coefficients under different wind directions.Noticeable differences are observed between the esti-mated wind loads with this protocol and those computed by a simple linear superposition used in most practical applications,indicating the importance of tower-antenna interaction.Also,as expected,the wind loads recom-mended by design codes overestimate the simulated results.More importantly,the telecommunication design codes inadequately identify the most favorable wind directions that are associated with the lowest wind loads,while the results of the proposed protocol align with observations from experimental studies.This information may be used to select the tower orientation before construction.The findings of this study are of importance for the telecommunication industry,which seeks reliable results with minimal computational efforts.In addition,it enhances the fragility analysis of telecommunication towers under strong winds,and the portfolio risk and resilience assessment of telecommunication systems.
基金National Natural Science Foundation of China under Grant No.51208382Shanghai Science Foundation under Grant No.12ZR1433500+4 种基金Shanghai Pujiang Scholar Program under Grant No.13PJ1407900Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120072120001State Key Laboratory of Power Transmission Equipment&System Security and New Technology under Grant No.2007DA10512711414State Key Laboratory of Disaster Reduction in Civil Engineering under Grant No.SLDRCE14-B-02Tongji University Testing Facility Funding under Grant No.2012096
文摘The wind energy industry has been growing rapidly during the past decades.Along with this growth,engineering problems have gradually emerged in the wind power industry,including those related to the structural reliability of turbine towers.This study proposes a rapid seismic analysis methodology for existing wind turbine tower structures.The method is demonstrated and validated using a case study on a 1.5 MW tubular steel wind turbine tower.Three finite element(FE)models are developed first.Field tests are conducted to obtain the turbine tower’s vibrational characteristics.The tests include(1) remotely measuring the tower vibration frequencies using a long range laser Doppler Vibrometer and(2) monitoring the tower structural vibration by mounting accelerometers along the height of the tubular structure.In-situ measurements are used to validate and update the FE models of the wind turbine tower.With the updated FE model that represents the practical structural conditions,seismic analyses are performed to study the structural failure,which is defined by the steel yielding of the tubular tower.This research is anticipated to benefit the management of the increasing number of wind energy converters by providing an understanding of the seismic assessment of existing tubular steel wind turbine towers.
基金The project supported by the National Natural Science Foundation of China (19725208) and the National Climbing project of China
文摘This article reports the findings on the adverse effect of the crosswind on the performance of natural draft cooling towers through numerical computation with the k-epsilon eddy-viscosity turbulence model. It is observed here that the cause of the adverse effect of the crosswind on the cooling towers call be attributed to the around flow effect which destroys the radial inflow into the cooling towers when the wind is absent. Hence, a significant deterioration in the heat transfer from the heat exchangers at lateral sides occurs.
基金Heilongjiang Province Application Technology Research and Development under Grant No.GX16C007National Key Research and Development Program of China under Grant No.2017YFC1500605
文摘Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond design,especially for high-rise buildings.In this study,steel high-rise buildings using either square concrete-filled-tube(CFT) columns or steel tube columns are designed.A detailed three-dimensional(3 D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse.The effectiveness is verified by both component tests and a full-scale shaking table test.The collapse margin,which is defined as the ratio of PGA between the collapse level to the design major earthquake level(Level 2),is quantified by a series of numerical simulations using incremental dynamic analyses(IDA).The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20.The significant variation in the collapse margin was caused by the different characteristics of the input ground motions.The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns,exhibiting only 57% of the collapse margin of the baseline building.The influence of reducing the height of the first story was quite significant.The shortened first story not only enlarged the collapse margin by 20%,but also changed the collapse mode.
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371,62003029)Beijing Natural Science Foundation(JQ20026)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.
基金National Natural Science Foundation of China Under Grant No.50878147
文摘To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types.
基金Project supported by the National Natural Science Foundation of China (No. 50378041) and the Specialized Research Fund for theDoctoral Program of Higher Education (No. 20030487016), China
文摘This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.
基金supported by National Basic Research Program of China (2012CB719702)
文摘Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Science and Technology (MOST) of China in 2012 to meet the research requirements of fire safety in high-rise buildings. This paper reviews the current state of art of research on fire dynamics of high-rise buildings, including the up-to-date progress of this project. The following three subjects on fire dynamics of high-rise buildings are addressed in this review: the ejected flame and fire plume behavior over facade out of the compartment window, the flame spread behavior over facade thermal insulation materiMs, and the buoyancy-driven smoke transportation characteristics along long vertical channels in high-rise buildings. Prospective future works are discussed and summarized.
基金Financial Support from Hong Kong PolytechnicUniversity Under Grant No. G-YX76
文摘Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, the potential for damage and loss of lives may not be known. In this paper, the performance of a typical high-rise building with a thick transfer plate (TP), which is one type of building structure commonly found in Hong Kong, is assessed against both earthquake and wind hazards. Seismic- and wind-resistant performance objectives are first reviewed based on relevant codes and design guidelines for high-rise buildings. After a brief introduction of wind-resistant design of the building, various methodologies, including equivalent static load analysis (ESLA), response spectrum analysis (RSA), pushover analysis (POA), linear and nonlinear time-history analysis (LTHA and NTHA), are employed to assess the seismic performance of the building when subjected to frequent earthquakes, design based earthquakes and maximum credible earthquakes. The effects of design wind and seismic action with a common 50-year return period are also compared. The results indicate that most performance objectives can be satisfied by the building, but there are some objectives, such as inter-story drift ratio, that cannot be achieved when subjected to the frequent earthquakes. It is concluded that in addition to wind, seismic action may need to be explicitly considered in the design of buildings in regions of moderate seismicity.
基金supported by Beijing University of Civil Engineering and Architecture Nature Science(ZF16078,X18067)
文摘It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.
基金National Natural Science Foundation of China Under Grant No.50908044 Jiangsu Provincial Natural Science Foundation of China Under Grant No.SBK201123270 a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and StateKey Lab of Subtropical Building Science,South China University of Technology Under Grant No.2011KA05
文摘For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response.
基金Project(50978198) supported by the National Natural Science Foundation of ChinaProject(SLDRCE08-B-03) supported by the Ministry of Science and Technology of China
文摘Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground response wave (named LS-R wave) of a soft soil site with deep deposit, taking long-period bedrock seismic record as input, was calculated by wave propagation method. After that, a TOMAKOMAI station long-period seismic record from the Tokachi-Oki earthquake and conventional E1-Centro wave were also chosen. Spectrum characteristics of these waves were analyzed and compared. Then, a series of shaking table tests were performed on a 1:50 scale super high-rise structural model under these seismic waves. Furthermore, numerical simulation of the prototype structure under these excitations was conducted, and structure damages under different intensive ground motions were discussed. The results show that: 1) Spectrum characteristics of ground response wave are significantly influenced by soft soil site with deep deposit, and the predominant period has an increasing trend. 2) The maximum acceleration amplification factor of the structure under the TOM wave is two times that under the E1-Centro wave; while the maximum displacement response of the structure under the TOM wave is 4.4 times that under the E1-Centro wave. Long-period ground motions show greater influences on displacement responses than acceleration responses for super high-rise building structures. 3) Most inelastic damage occurs at the upper 1/3 part of the super high-rise building when subjected to long-period ground motions.
基金Operational Technology Research Team Project of Chongqing Meteorological Service(YWGGTD-201702)Technology Innovation and Application Development Key Project of Chongqing(cstc2019jscx-tjsb X0007)Natural Science Foundation of Chongqing(cstc2018jcyj AX0434)。
文摘The structure and organization of the extreme-rain-producing deep convection towers and their roles in the formation of a southwest vortex(SWV)event are studied using the intensified surface rainfall observations,weather radar data and numerical simulations from a high-resolution convection-allowing model.The deep convection towers occurred prior to the emergence of SWV and throughout its onset and development stages.They largely resemble the vortical hot tower(VHT)commonly seen in typhoons or hurricanes and are thus considered as a special type of VHT(sVHT).Each sVHT presented a vorticity dipole structure,with the upward motion not superpose the positive vorticity.A positive feedback process in the SWV helped the organization of sVHTs,which in turn strengthened the initial disturbance and development of SWV.The meso-γ-scale large-value areas of positive relative vorticity in the mid-toupper troposphere were largely induced by the diabatic heating and tilting.The strong mid-level convergence was attributed to the mid-level vortex enhancement.The low-level vortex intensification was mainly due to low-level convergence and the stretching of upward flow.The meso-α-scale large-value areas of positive relative vorticity in the low-level could expand up to about 400 hPa,and gradually weakened with time and height due to the decaying low-level convergence and vertical stretching in the matured SWV.As the SWV matured,two secondary circulations were formed,with a weaker mean radial inflow than the outflow and elevated to 300-400 hPa.
基金Projects(50978203,51208254)supported by the National Natural Science Foundation of ChinaProject(BK2012390)supported by Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.