期刊文献+
共找到135,337篇文章
< 1 2 250 >
每页显示 20 50 100
A Stroke-Limitation AMD Control System with Variable Gain and Limited Area for High-Rise Buildings
1
作者 Zuo-Hua Li Qing-Gui Wu +1 位作者 Jun Teng Chao-Jun Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期865-884,共20页
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ... Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame. 展开更多
关键词 high-rise buildings active control stroke limitations variable gain variable limited area
下载PDF
A novel control strategy for reproducing the floor motions of high-rise buildings by earthquake-simulating shake tables
2
作者 Yuteng Cao Zhe Qu Xiaodong Ji 《Earthquake Research Advances》 CSCD 2024年第1期67-75,共9页
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab... To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range. 展开更多
关键词 Shake table test Nonstructural element high-rise building Open-loop IDCS algorithm Off-line iteration
下载PDF
A New Dynamic and Vertical Photovoltaic Integrated Building Envelope for High-Rise Glaze-Facade Buildings
3
作者 Wuwei Zou Yan Wang +3 位作者 Enze Tian Jiaze Wei Jinqing Peng Jinhan Mo 《Engineering》 SCIE EI CAS CSCD 2024年第8期194-203,共10页
Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,... Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,and solar energy harvesting for glazed facades.In this study,we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope(dvPVBE)that offers extraordinary flexibility with weather-responsive slat angles and blind positions,superior architectural aesthetics,and notable energy-saving potential.Three hierarchical control strategies were proposed for different scenarios of the dvPVBE:power generation priority(PGP),natural daylight priority(NDP),and energy-saving priority(ESP).Moreover,the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE.An office room integrated with a dvPVBE was modeled using EnergyPlus.The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies.The results indicate that the application of dvPVBEs in Beijing can provide up to 131%of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226%compared with static photovoltaic(PV)blinds.The concept of this novel dvPVBE offers a viable approach by which the thermal load,daylight penetration,and energy generation can be effectively regulated. 展开更多
关键词 Weather-responsive facades building energy efficiency Dynamic photovoltaic integrated building envelopes(PVBEs) building-integrated photovoltaics(BIPVs)
下载PDF
Quantitative investigation on collapse margin of steel high-rise buildings subjected to extremely severe earthquakes 被引量:10
4
作者 Lin Xuchuan Mikiko Kato +1 位作者 Zhang Lingxin Masayoshi Nakashima 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期445-457,共13页
Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond de... Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond design,especially for high-rise buildings.In this study,steel high-rise buildings using either square concrete-filled-tube(CFT) columns or steel tube columns are designed.A detailed three-dimensional(3 D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse.The effectiveness is verified by both component tests and a full-scale shaking table test.The collapse margin,which is defined as the ratio of PGA between the collapse level to the design major earthquake level(Level 2),is quantified by a series of numerical simulations using incremental dynamic analyses(IDA).The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20.The significant variation in the collapse margin was caused by the different characteristics of the input ground motions.The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns,exhibiting only 57% of the collapse margin of the baseline building.The influence of reducing the height of the first story was quite significant.The shortened first story not only enlarged the collapse margin by 20%,but also changed the collapse mode. 展开更多
关键词 collapse quantification steel high-rise building numerical models local buckling collapse mechanism
下载PDF
Dynamic response characteristics of super high-rise buildings subjected to long-period ground motions 被引量:4
5
作者 陈清军 袁伟泽 +1 位作者 李英成 曹丽雅 《Journal of Central South University》 SCIE EI CAS 2013年第5期1341-1353,共13页
Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground ... Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground response wave (named LS-R wave) of a soft soil site with deep deposit, taking long-period bedrock seismic record as input, was calculated by wave propagation method. After that, a TOMAKOMAI station long-period seismic record from the Tokachi-Oki earthquake and conventional E1-Centro wave were also chosen. Spectrum characteristics of these waves were analyzed and compared. Then, a series of shaking table tests were performed on a 1:50 scale super high-rise structural model under these seismic waves. Furthermore, numerical simulation of the prototype structure under these excitations was conducted, and structure damages under different intensive ground motions were discussed. The results show that: 1) Spectrum characteristics of ground response wave are significantly influenced by soft soil site with deep deposit, and the predominant period has an increasing trend. 2) The maximum acceleration amplification factor of the structure under the TOM wave is two times that under the E1-Centro wave; while the maximum displacement response of the structure under the TOM wave is 4.4 times that under the E1-Centro wave. Long-period ground motions show greater influences on displacement responses than acceleration responses for super high-rise building structures. 3) Most inelastic damage occurs at the upper 1/3 part of the super high-rise building when subjected to long-period ground motions. 展开更多
关键词 long-period ground motion super high-rise building shaking table model test numerical simulation spectrumcharacteristic analysis
下载PDF
Study on Evacuation Strategy of Commercial High-Rise Building under Fire Based on FDS and Pathfinder
6
作者 Zheng Yan Ying Wang +1 位作者 Longxiao Chao Jian Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1077-1102,共26页
With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the exis... With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings. 展开更多
关键词 high-rise building fire personnel evacuation refuge floor safety analysis
下载PDF
A review on research of fire dynamics in high-rise buildings 被引量:3
7
作者 Jinhua Sun Longhua Hu Ying Zhang 《Theoretical & Applied Mechanics Letters》 CAS 2013年第4期1-13,共13页
Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Sc... Since serious fire occurred frequently in recent years, fire safety of high-rise building has attracted extensive attention. A National Basic Research Program (973 program) of China has been set up by Ministry of Science and Technology (MOST) of China in 2012 to meet the research requirements of fire safety in high-rise buildings. This paper reviews the current state of art of research on fire dynamics of high-rise buildings, including the up-to-date progress of this project. The following three subjects on fire dynamics of high-rise buildings are addressed in this review: the ejected flame and fire plume behavior over facade out of the compartment window, the flame spread behavior over facade thermal insulation materiMs, and the buoyancy-driven smoke transportation characteristics along long vertical channels in high-rise buildings. Prospective future works are discussed and summarized. 展开更多
关键词 high-rise building fire dynamics facade flame fire spread smoke transportation
下载PDF
Effects of high modes on the wind-induced response of super high-rise buildings 被引量:2
8
作者 Feng Ruoqiang Guirong Yan Ge Jinming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第3期427-434,共8页
For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise... For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response. 展开更多
关键词 super high-rise building wind tunnel test mode couple wind-induced response
下载PDF
Seismic performance of high-rise buildings in selected regions in Saudi Arabia according to different seismic codes 被引量:1
9
作者 Sayed Mahmoud Mohamed Alsearheed Waleed Abdallah 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期179-191,共13页
The design code for each country is revised and updated based on an expected zone’s seismic intensities,geotechnical site classifications,structural systems,construction materials and methods of construction in order... The design code for each country is revised and updated based on an expected zone’s seismic intensities,geotechnical site classifications,structural systems,construction materials and methods of construction in order to provide more realistic considerations of seismic demand,seismic response,and seismic capacity.Based on the aforementioned provisions,structures designed according to different seismic codes may yield different performances for the same level of hazard.This study aims to investigate and compare the induced responses related to the earthquake-resistant design of reinforced concrete(RC)buildings according to the Saudi building code(SBC-301),American code(ASCE-7),uniform building code(UBC-97),and European code(EC-8).In order to account for the provision regarding the hazard specification and its effect on the induced seismic responses,four regions in the Kingdom of Saudi Arabia with different seismic levels are selected.The code provisions related to the specification of site classification and its effect on the induced design base shear are investigated as well.Significant differences are observed in the induced responses with the variation in seismic design codes for the considered seismic hazards and site classifications. 展开更多
关键词 high-rise building SBC-301 international seismic codes seismic zones site classifications
下载PDF
Numerical Simulation of Wind Field Characteristics around Two Adjacent High-Rise Buildings 被引量:2
10
作者 Wenkai He Weibin Yuan 《Journal of Applied Mathematics and Physics》 2014年第6期264-268,共5页
This paper based on Reynolds-averaged Navier-Stokes equations standard ?model [1];the surface pressure on the wind field around two adjacent high-rise buildings was numerically simulated with software Fluent. The resu... This paper based on Reynolds-averaged Navier-Stokes equations standard ?model [1];the surface pressure on the wind field around two adjacent high-rise buildings was numerically simulated with software Fluent. The results show that with the influence of adjacent high-rise building, numerical simulation is a good way to study the wind field around high-rise building and the distribution of wind pressure on building’ surface. The pressures on the windward surface are positive with the maximum at 2/3 H height and have lower values on the top and bottom. The pressures on the leeward surface and two sides were negative. Due to the serious flow separation at the corner of building’s windward, the wind field has a high turbulent kinetic energy. 展开更多
关键词 high-risE building NUMERICAL Simulation WIND Field Characteristics TURBULENCE Model
下载PDF
Fuzzy-AHP-Based Comprehensive Evaluation on Facility Management System of High-Rise Office Buildings 被引量:2
11
作者 ZHANG Peihong,WANG Kan,WAN Huanhuan,MA Zhongjiao(School of Environment Engineering,Shenyang Jianzhu University,Shenyang,China,110168) 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2011年第2期324-330,共7页
The present building facility management status in China resulted in many problems such as high energy consumption,failure of automation control,services failure and poor indoor air quality.Based on questionnaires and... The present building facility management status in China resulted in many problems such as high energy consumption,failure of automation control,services failure and poor indoor air quality.Based on questionnaires and interviews to professional engineers and building users,a comprehensive evaluation index system was established on facility management of high-rise office buildings.A Fuzzy AHP based upon hierarchy criteria system was established.A Fuzzy AHP Evaluation Model on Facility Management System was set up;α-cut analysis was introduced and incorporated with expert knowledge together,which made up the optimism index λ.The fuzzy optimum crisp weight of each criterion was resulted from data-mining.Case investigations were processed in high-rise office buildings in Shenyang.The results illustrated that indoor air quality,thermal comfort and life cycle cost were the most important indexes in the evaluation of Facility Management System of high rise office buildings.Residents in high-rise buildings in Shenyang pay less attention to maintenance management and environment protection.By comparison with the analysis result of Export Choice,Fuzzy AHP-based evaluation model could act as a scientific reference for the establishment of governmental standards in facility management area in building. 展开更多
关键词 building facility management evaluation index Fuzzy AHP indoor air quality thermal comfort
下载PDF
Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings
12
作者 Inna Bilous Dmytro Biriukov +3 位作者 Dmytro Karpenko Tatiana Eutukhova Oleksandr Novoseltsev Volodymyr Voloshchuk 《Energy Engineering》 EI 2024年第12期3617-3634,共18页
This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort o... This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings. 展开更多
关键词 building energy management building heating system dynamic modeling reinforcement learning energy efficiency comfortable temperature
下载PDF
Debris flow runout behaviors considering the influences of densely populated buildings
13
作者 ZHANG Shuai FANG Zhe +4 位作者 DAI Cong WANG Shuairong PENG Jingyu ZHOU Yiling SHEN Ping 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2696-2712,共17页
Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition ... Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition of debris flows.But the impact of different building densities and sizes on debris flow dynamics has yet to be quantified to guide urban planning in debris flow risk zones.This study focused on a debris flow that occurred in Zhouqu County,Gansu Province,China on August 7th,2010,which was catastrophic and destroyed many buildings.The FLO-2D software was used to simulate this debris flow in two scenarios,i.e.the presence and the absence of buildings,to obtain debris-flow intensity parameters.The developed model was then used to further analyze the influence of large buildings and narrow channels within the urban environment.The simulation results show that considering the presence of buildings in the simulation is essential for accurate assessment of debris flow intensity and deposition distribution.The layout of buildings in the upstream urban area,such as large buildings or parallel buildings which form narrow channels,can affect the flow velocity and depth of debris flow heading towards downstream buildings.To mitigate damage to downstream buildings,the relative spacing(d/a)between upstream and downstream buildings should not exceed a value of two and should ideally be even lower.These findings provide valuable insights for improving the resistance of mountainous cities to urban debris flows. 展开更多
关键词 Debris flow Risk building blockage effect Zhouqu Urban layout
下载PDF
Effect of building energy efficiency standards on carbon emission efficiency in commercial buildings
14
作者 Xia Wang Qi Ye +1 位作者 Yan Du Mao Zhou 《Chinese Journal of Population,Resources and Environment》 2024年第3期250-257,共8页
The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,expl... The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,exploring the provincial variations in carbon emission efficiency(CEE)in the building sector and identifying the effect of BEESs on CEE is crucial.This study focuses on commercial buildings in China and applies a difference in differences model to evaluate the impact of BEESs on the CEE of commercial buildings.The slacks-based measure–data envelopment analysis model is employed to assess the CEE of commercial buildings in 30 Chinese provinces from 2000 to 2019.Furthermore,heterogeneous tests are used to explore how climate characteristics and economic conditions affect the efficiency of BEESs.The results indicate that BEESs positively influence the CEE of commercial buildings.Specifically,a 1%increase in the intensity of BEESs causes a 0.1484%increase in the CEE of commercial buildings.Moreover,the impact of BEESs is particularly pronounced in the southern and western provinces.This study provides valuable scientific evidence for governments to enhance BEESs implementation. 展开更多
关键词 Commercial buildings Carbon emissions efficiency building energy efficiency standards Slack-based measure–data development analysis Difference in differences
下载PDF
Farm buildings and agri-food transitions in Southern France:Mapping dynamics using a stakeholder-based diagnosis
15
作者 Orlane Rouquier Coline Perrin +1 位作者 Michaël Pouzenc Valérie Olivier-Salvagnac 《Geography and Sustainability》 CSCD 2024年第1期108-120,共13页
This study's goal is to present a dynamic portrait of the farm-buildings environment in Occitania,in Southern France,in order to better identify the transitions underway in agri-food chains.To this end,we undertoo... This study's goal is to present a dynamic portrait of the farm-buildings environment in Occitania,in Southern France,in order to better identify the transitions underway in agri-food chains.To this end,we undertook a ter-ritorial diagnosis based on actor statements,using 28 semi-structured interviews across Occitania.This diagnosis was enriched by graphic modelling,which enabled the spatialization of the dynamics described.We show that the process of standardisation of farm buildings prevails in the majority of the territories studied.This phenomenon has intensified in recent years with the development of vast photovoltaic-roofed sheds,accentuating the farm-land conversion and soil sealing.At the same time,in areas with strong environmental,landscape and heritage contexts,a'new adventure in farm buildings'(2022 survey)is taking shape.It is primarily driven by local short food chains,which rely on self-construction,repurposing and refurbishment,the sharing of tools and equipment,and which favour the use and reuse of local resources.This study shows that farm-buildings dynamics crystallise many challenges confronting the reterritorialisation of agriculture and food production. 展开更多
关键词 Farm buildings TRANSITION Local food systems Occitania Cartographic modelling
下载PDF
Controllable thermal rectification design for buildings based on phase change composites
16
作者 Hengbin Ding Xiaoshi Li +2 位作者 Tianhang Li Xiaoyong Zhao He Tian 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期40-45,共6页
Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device... Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements. 展开更多
关键词 phase change composites controllable thermal rectification building applications
下载PDF
Dynamic response of buildings under debris flow impact
17
作者 LIU Huan FAN Xiaoyi +1 位作者 TIAN Shujun DENG Xin 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1581-1597,共17页
This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology co... This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology considers the variables of debris flow depth and velocity and introduces the intensity index IDV(IDV = DV) to evaluate three different levels of debris flow impact intensity. The primary focus of this study is to investigate the dynamic response and failure mechanism of RC-frame buildings under debris flow impact, including structural failure patterns, impact force and column displacement. The results show that under a highintensity impact, a gradual collapse process of the RCframe building can be observed, and the damage mode of the frame column reflects shear failure or plastic hinge failure mechanism. First, the longitudinal infill walls are damaged owing to their low out-of-plane flexural capacity;the critical failure intensity index IDV value is approximately 7.5 m2/s. The structure cannot withstand debris flows with an intensity index IDV greater than 16 m2/s, and it is recommended that the peak impact force should not exceed 2100 k N. The impact damage ability of debris flow on buildings mostly originates from the impact force of the frontal debris flow, with the impact force of the debris flow body being approximately 42% lower than that of the debris flow head. Finally, a five-level classification system for evaluating the damage status of buildings is proposed based on the numerical simulation and investigation results of the disaster site. 展开更多
关键词 SPH–FEM method Debris flow buildings The intensity index Dynamic response
下载PDF
Seismic loss assessment of RC high-rise buildings designed according to Eurocode 8
18
作者 Jelena Pejovic Nina Serdar 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期807-824,共18页
A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based ... A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8. 展开更多
关键词 RC high-rise buildings seismic loss assessment loss functions nonlinear time-history analysis(NLTHA) cumulative lognormal probability distribution random effects Eurocode 8
下载PDF
Field measurements for calibration of simplified models of the stiffening effect of infill masonry walls in high-rise RC framed and shear-wall buildings
19
作者 Zhou Yun Pei Yilin +2 位作者 Zhou Yi Hyeon-Jong Hwang Yi Weijian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期87-104,共18页
As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplif... As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplified empirical criteria that lead to a period shortening. The difference can be greatly decreased by using a structural identification methodology. In this study, an ambient vibration test was performed on four on-site reinforced concrete high-rise buildings, and the design results were compared with the PKPM models using corresponding finite element(FE) models. A diagonal strut model was used to simulate the behavior of the infill wall, and the identified modal parameters measured from the on-site test were employed to calibrate the parameters of the diagonal strut in the FE models. The SAP2000 models with calibrated elastic modulus were used to evaluate the seismic response in the elastic state. Based on the load-displacement relationship of the infill wall, nonlinear dynamic analysis models were built in PERFORM-3 D and calibrated using the measured modal periods. The analysis results revealed that the structural performance under small/large earthquake records were both strengthened by infill walls, and the contribution of infill walls should be considered for better accuracy in the design process. 展开更多
关键词 high-rise building ambient vibration test model calibration infi ll wall seismic performance nonlinear dynamic analysis
下载PDF
eQUEST Based Building Energy Modeling Analysis for Energy Efficiency of Buildings
20
作者 Saroj Lamichhane Roseline Mostafa +1 位作者 Bhaskaran Gopalakrishnan Dayakar G.Devaru 《Energy Engineering》 EI 2024年第10期2743-2767,共25页
Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impac... Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B. 展开更多
关键词 Energy efficiency EQUEST energy consumption building energy modeling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部