Thermal groundwater resources were found to have occurred in deep-seated bedrock aquifers in the northeastern North China plain near Tianjin, China. Meso- to Neo-Proterozoic and Paleozoic carbonate rocks on the Cangxi...Thermal groundwater resources were found to have occurred in deep-seated bedrock aquifers in the northeastern North China plain near Tianjin, China. Meso- to Neo-Proterozoic and Paleozoic carbonate rocks on the Cangxian uplift are capable of yielding 960-4 200 m 3/d of 60 to 96 ℃ water from the wells ranging in depth between 1 000 and 4 000 m. Conductive heat flow of 0.063 to 0.144 2 W/m 2 from the deep crust is responsible for this anomalous geothermal field. The water in the Ordovician aquifer is characterized by relatively high TDS, high concentrations of SO 4 and SO 4·Cl-Na·Ca type, but the waters from the Meso- to Neo-Proterozoic and Cambrian aquifers, by relatively low TDS, low concentrations of SO 4 and predominantly Cl·SO 4-Na type. It is noted that when the temperature of the waters increases at a rate of 10 ℃ in the range of 30-100 ℃, the content of SiO 2 increases at a rate of 12 to 15 mg/L, and fluoride concentration increases at a rate of 2.3 to 2.5 mg/L. Hydrochemical and isotopic data suggest that the thermal water in the bedrock aquifers is of meteoric origin and recharged in the northern mountain area to the north of the Baodi-Ninghe fault, and then flows laterally for a long distance from the north to the south to the city of Tianjin. Temperature of the waters increases because of heat exchange with the rocks and recharge by conductive heat flow from beneath.展开更多
The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat t...The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat transfer of four GHEs was carried out in 2010.Results indicate that the velocity field is disturbed by GHEs.The optimal orientation strategy of side pipe is that the upward pipe is located upstream and the downward pipe downstream.The space between GHEs should be appropriately adjusted,depending on the direction and flow velocity.Groups of GHEs should be installed perpendicular to the mainstream in a single row,but if the acreage does not meet the requirements,GHEs should be installed in staggered multiple rows.Fewer GHEs parallel to the mainstream strengthen the heat transfer.Moreover,numerical results agree well with the test data,with the maximum relative error being less than 7.7%.展开更多
This paper targets its research at the exploitation–reinjection well of geothermal fluid of one geothermal heating project in Tianjin, China, examines such factors as ground temperature, CO_2 partial pressure and str...This paper targets its research at the exploitation–reinjection well of geothermal fluid of one geothermal heating project in Tianjin, China, examines such factors as ground temperature, CO_2 partial pressure and stratum lithology, and simulates the changes in the main component contents of geothermal fluids mixed at different proportions in the exploitation and reinjection well. The research findings show that the mixed fluids are increasingly similar in nature to the reinjected water as the reinjection process goes on. It's suggested that the manual method should be used to ensure the reinjected water has the similar mineralization as the exploited ground water in the process of reinjection and some acceptable adjustments should be made according to the specific component and water temperature. The study on water-rock balance calculation shows that PHREEQC can simulate the complicated chemical reactions related to water when the transfer of solute happens, so the necessary technological supports are given for the reasonable development and protection of geothermal resources.展开更多
This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer tha...This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 ℃ and the hot waters from 32.1 to 68.2 ℃. All waters exhibited a near-neutral pH of 6.0-7.6. The thermal waters had a high total dis- solved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0-852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca-Na-SO4 type (Ham- mam Righa) and cold waters in the recharge zone of the Ca-Na-HCO3 type (Zaccar Mount). Reservoir tempera- tures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95℃ for HR4, HR2, and HRI, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1-2.2 km. The hotwaters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca-Na-SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich ground- water, resulting in waters that plot in the immature water field in the Na-K-Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 〈 R 〈 29.2 %. We summa- rize these results with a geothermal conceptual model of the Hammam Righa geothermal field.展开更多
Arsenic is a carcinogen known for its acute toxicity to organisms.Geothermal waters are commonly high in arsenic,as shown at the Bjarnarflag Power Plant,Iceland (w224 mg/kg of solvent).Development of geothermal energy...Arsenic is a carcinogen known for its acute toxicity to organisms.Geothermal waters are commonly high in arsenic,as shown at the Bjarnarflag Power Plant,Iceland (w224 mg/kg of solvent).Development of geothermal energy requires adequate disposal of arsenic-rich waters into groundwater/geothermal systems.The outcome of arsenic transport models that assess the effect of geothermal effluent on the environment and ecosystems may be influenced by the sensitivity of hydraulic parameters.However,previous such studies in Iceland do not consider the sensitivity of hydraulic parameters and thereby the interpretations remain unreliable.Here we used the Lake Myvatn basaltic aquifer system as a case study to identify the sensitive hydraulic parameters and assess their role in arsenic transport.We develop a one-dimensional reactive transport model (PHREEQC ver.2.),using geochemical data from Bjarnarflag,Iceland.In our model,arsenite (H3AsO3) was predicted to be the dominant species of inorganic arsenic in both groundwater and geothermal water.Dilution reduced arsenic concentration beloww5 mg/kg.Adsorption reduced the residual contamination below w0.4 mg/kg at 250 m along transect.Based on our modelling,we found volumetric input to be the most sensitive parameter in the model.In addition,the adsorption strength of basaltic glass was such that the physical hydrogeological parameters,namely: groundwater velocity and longitudinal dispersivity had little influence on the concentration profile.展开更多
Based on the project titled "Investigation and evaluation of shallow geothermal energy in major cities of Tibet Autonomous Region", the distribution characteristics and occurrence conditions of shallow geoth...Based on the project titled "Investigation and evaluation of shallow geothermal energy in major cities of Tibet Autonomous Region", the distribution characteristics and occurrence conditions of shallow geothermal fields in these cities were introduced in this paper. To this end, relevant data in Lhasa, Shigatse and Nyingchi Cities through vertical thermometry was a focus, so as to analyze groundwater temperature and the distribution law of strata with constant temperature. Then through comprehensive comparisons and analysis of the relationship between groundwater temperature and climate, differences in this aspect of Nagqu City were taken as a typical case to clarify formation of geothermal field and corresponding influence on groundwater temperature, furthermore providing basic data for rational development and utilization of shallow geothermal energy in Tibet Autonomous Region.展开更多
This study aimed to elucidate the influence of inflow water on the salinity concentration process of a saline lake and the mass balance of Lake Issyk-Kul,a tectonic saltwater lake in Kyrgyzstan.Based on the survey res...This study aimed to elucidate the influence of inflow water on the salinity concentration process of a saline lake and the mass balance of Lake Issyk-Kul,a tectonic saltwater lake in Kyrgyzstan.Based on the survey results and meteorological data from 2012 to 2015,we analyzed the dissolved chemical composition loads due to water inflow.Then,we discussed the relationship between the increase in salinity and water inflow into the lake.Through the water quality analysis data,we used the tank model to estimate the river inflow and analyze the loads by the L-Q curve.The groundwater loads were then estimated from the average annual increase in salinity of the lake over a period of 30 a.The results suggest that Lake Issyk-Kul was temporarily freshened between about AD 1500 and 1800 when an outflowing river existed,and thereafter,it became a closed lake in AD 1800 and continued to remain a saline lake until present.The chemical components that cause salinization are supplied from the rivers and groundwater in the catchment area,and when they flow into the lake,Ca^(2+),HCO_(3)−and Mg^(2+)precipitate as CaCO_(3) and MgCO_(3).These compounds were confirmed to have been left on the lakeshore as evaporite.The model analysis showed that 1.67 mg/L of Ca^(2+)and Mg^(2+)supplied from rivers and groundwater are precipitated as evaporite and in other forms per year.On the other hand,salinity continues to remain in the lake water at a rate of 27.5 mg/L per year.These are the main causes of increased salinity in Lake Issyk-Kul.Since Na^(+)and Cl^(-)are considered to be derived from geothermal water,they will continue to flow in regardless of the effects of human activities.Therefore,as long as these components are accumulated in Lake Issyk-Kul as a closed lake,the salinity will continue to increase in the future.展开更多
The effect of groundwater activity on the regional geotemperature pattern and heat flow measurements is one of the frontier topics in modem geothermal studies. It is well known that groundwater activity exists everywh...The effect of groundwater activity on the regional geotemperature pattern and heat flow measurements is one of the frontier topics in modem geothermal studies. It is well known that groundwater activity exists everywhere in the uppermost part of the Earth’s crust. However, this activity sometimes seems very difficult to identify during temperature展开更多
Several aquifers located in North-Central Mexico have natural arsenic(As)concentrations higher than those allowed by national and international regulations;these aquifers are usually located in fractured volcanic envi...Several aquifers located in North-Central Mexico have natural arsenic(As)concentrations higher than those allowed by national and international regulations;these aquifers are usually located in fractured volcanic environments that interact with sedimentary basins and have a carbonate basement.In this study,an evaluation of As in volcanic and sedimentary rocks collected at 13 sampling sites along the Sierra de Codornices(Guanajuato State,Central Mexico)was carried out.These geologic materials are representative of the dominant hydrogeologic environment.The As content is disseminated in volcanic rocks and the highest contents were obtained in felsic rocks;this information served to identify the hydrogeochemical processes related to the mobilization and transport of arsenic in the aquifer.The mobilization of As is a product of the dissolution of volcanic glass,a process involved in the alkaline desorption that occurs on As-containing mineral surfaces and possibly by the dissolution/desorption of Fe minerals and some clays,all these processes may be accelerated by the geothermal characteristics of the groundwater in the study area.展开更多
China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t...China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.展开更多
基金ThisworkisfundedbytheMinistryofEducationofChinafortheKeyProjectsofScienceandTechnologyResearch (No .0 2 0 2 6)
文摘Thermal groundwater resources were found to have occurred in deep-seated bedrock aquifers in the northeastern North China plain near Tianjin, China. Meso- to Neo-Proterozoic and Paleozoic carbonate rocks on the Cangxian uplift are capable of yielding 960-4 200 m 3/d of 60 to 96 ℃ water from the wells ranging in depth between 1 000 and 4 000 m. Conductive heat flow of 0.063 to 0.144 2 W/m 2 from the deep crust is responsible for this anomalous geothermal field. The water in the Ordovician aquifer is characterized by relatively high TDS, high concentrations of SO 4 and SO 4·Cl-Na·Ca type, but the waters from the Meso- to Neo-Proterozoic and Cambrian aquifers, by relatively low TDS, low concentrations of SO 4 and predominantly Cl·SO 4-Na type. It is noted that when the temperature of the waters increases at a rate of 10 ℃ in the range of 30-100 ℃, the content of SiO 2 increases at a rate of 12 to 15 mg/L, and fluoride concentration increases at a rate of 2.3 to 2.5 mg/L. Hydrochemical and isotopic data suggest that the thermal water in the bedrock aquifers is of meteoric origin and recharged in the northern mountain area to the north of the Baodi-Ninghe fault, and then flows laterally for a long distance from the north to the south to the city of Tianjin. Temperature of the waters increases because of heat exchange with the rocks and recharge by conductive heat flow from beneath.
文摘The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat transfer of four GHEs was carried out in 2010.Results indicate that the velocity field is disturbed by GHEs.The optimal orientation strategy of side pipe is that the upward pipe is located upstream and the downward pipe downstream.The space between GHEs should be appropriately adjusted,depending on the direction and flow velocity.Groups of GHEs should be installed perpendicular to the mainstream in a single row,but if the acreage does not meet the requirements,GHEs should be installed in staggered multiple rows.Fewer GHEs parallel to the mainstream strengthen the heat transfer.Moreover,numerical results agree well with the test data,with the maximum relative error being less than 7.7%.
基金supported by geological survey projects of China Geological Survey (No.12120113077500)National Basic Research Program of China (973 Program) (No.2013CB036001)National Natural Science Foundation of China (No.41302220)
文摘This paper targets its research at the exploitation–reinjection well of geothermal fluid of one geothermal heating project in Tianjin, China, examines such factors as ground temperature, CO_2 partial pressure and stratum lithology, and simulates the changes in the main component contents of geothermal fluids mixed at different proportions in the exploitation and reinjection well. The research findings show that the mixed fluids are increasingly similar in nature to the reinjected water as the reinjection process goes on. It's suggested that the manual method should be used to ensure the reinjected water has the similar mineralization as the exploited ground water in the process of reinjection and some acceptable adjustments should be made according to the specific component and water temperature. The study on water-rock balance calculation shows that PHREEQC can simulate the complicated chemical reactions related to water when the transfer of solute happens, so the necessary technological supports are given for the reasonable development and protection of geothermal resources.
基金the MEXT(Ministry of Education,Culture,Sports,Science and Techn ology,Japan)Ph.D.scholarship providing support for the first author during this studythe G-COE of Kyushu University for funding this research
文摘This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 ℃ and the hot waters from 32.1 to 68.2 ℃. All waters exhibited a near-neutral pH of 6.0-7.6. The thermal waters had a high total dis- solved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0-852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca-Na-SO4 type (Ham- mam Righa) and cold waters in the recharge zone of the Ca-Na-HCO3 type (Zaccar Mount). Reservoir tempera- tures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95℃ for HR4, HR2, and HRI, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1-2.2 km. The hotwaters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca-Na-SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich ground- water, resulting in waters that plot in the immature water field in the Na-K-Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 〈 R 〈 29.2 %. We summa- rize these results with a geothermal conceptual model of the Hammam Righa geothermal field.
基金Landsvirkjun and the Landsvirkjun Energy Research Fund for supporting this project
文摘Arsenic is a carcinogen known for its acute toxicity to organisms.Geothermal waters are commonly high in arsenic,as shown at the Bjarnarflag Power Plant,Iceland (w224 mg/kg of solvent).Development of geothermal energy requires adequate disposal of arsenic-rich waters into groundwater/geothermal systems.The outcome of arsenic transport models that assess the effect of geothermal effluent on the environment and ecosystems may be influenced by the sensitivity of hydraulic parameters.However,previous such studies in Iceland do not consider the sensitivity of hydraulic parameters and thereby the interpretations remain unreliable.Here we used the Lake Myvatn basaltic aquifer system as a case study to identify the sensitive hydraulic parameters and assess their role in arsenic transport.We develop a one-dimensional reactive transport model (PHREEQC ver.2.),using geochemical data from Bjarnarflag,Iceland.In our model,arsenite (H3AsO3) was predicted to be the dominant species of inorganic arsenic in both groundwater and geothermal water.Dilution reduced arsenic concentration beloww5 mg/kg.Adsorption reduced the residual contamination below w0.4 mg/kg at 250 m along transect.Based on our modelling,we found volumetric input to be the most sensitive parameter in the model.In addition,the adsorption strength of basaltic glass was such that the physical hydrogeological parameters,namely: groundwater velocity and longitudinal dispersivity had little influence on the concentration profile.
基金jointly funded by the China Geological Survey "Investigation and evaluation of shallow geothermal energy in Lhasa City (No.1212011120160)" and "Hydrogeological survey of shallow geothermal energy development zones in major cities of Tibet Autonomous Region on a scale of 1:50 000 (No.12120114086501)"
文摘Based on the project titled "Investigation and evaluation of shallow geothermal energy in major cities of Tibet Autonomous Region", the distribution characteristics and occurrence conditions of shallow geothermal fields in these cities were introduced in this paper. To this end, relevant data in Lhasa, Shigatse and Nyingchi Cities through vertical thermometry was a focus, so as to analyze groundwater temperature and the distribution law of strata with constant temperature. Then through comprehensive comparisons and analysis of the relationship between groundwater temperature and climate, differences in this aspect of Nagqu City were taken as a typical case to clarify formation of geothermal field and corresponding influence on groundwater temperature, furthermore providing basic data for rational development and utilization of shallow geothermal energy in Tibet Autonomous Region.
基金This study was supported in part by a research grant from the Graduate School of Humanities,Hosei University and Japan Society for the Promotion of Science(JSPS,JP21K13150).
文摘This study aimed to elucidate the influence of inflow water on the salinity concentration process of a saline lake and the mass balance of Lake Issyk-Kul,a tectonic saltwater lake in Kyrgyzstan.Based on the survey results and meteorological data from 2012 to 2015,we analyzed the dissolved chemical composition loads due to water inflow.Then,we discussed the relationship between the increase in salinity and water inflow into the lake.Through the water quality analysis data,we used the tank model to estimate the river inflow and analyze the loads by the L-Q curve.The groundwater loads were then estimated from the average annual increase in salinity of the lake over a period of 30 a.The results suggest that Lake Issyk-Kul was temporarily freshened between about AD 1500 and 1800 when an outflowing river existed,and thereafter,it became a closed lake in AD 1800 and continued to remain a saline lake until present.The chemical components that cause salinization are supplied from the rivers and groundwater in the catchment area,and when they flow into the lake,Ca^(2+),HCO_(3)−and Mg^(2+)precipitate as CaCO_(3) and MgCO_(3).These compounds were confirmed to have been left on the lakeshore as evaporite.The model analysis showed that 1.67 mg/L of Ca^(2+)and Mg^(2+)supplied from rivers and groundwater are precipitated as evaporite and in other forms per year.On the other hand,salinity continues to remain in the lake water at a rate of 27.5 mg/L per year.These are the main causes of increased salinity in Lake Issyk-Kul.Since Na^(+)and Cl^(-)are considered to be derived from geothermal water,they will continue to flow in regardless of the effects of human activities.Therefore,as long as these components are accumulated in Lake Issyk-Kul as a closed lake,the salinity will continue to increase in the future.
基金Project supported by the National Natural Science Foundation of China.
文摘The effect of groundwater activity on the regional geotemperature pattern and heat flow measurements is one of the frontier topics in modem geothermal studies. It is well known that groundwater activity exists everywhere in the uppermost part of the Earth’s crust. However, this activity sometimes seems very difficult to identify during temperature
基金financed partially by PAPIIT-DGAPA(Contribution IN-105023)。
文摘Several aquifers located in North-Central Mexico have natural arsenic(As)concentrations higher than those allowed by national and international regulations;these aquifers are usually located in fractured volcanic environments that interact with sedimentary basins and have a carbonate basement.In this study,an evaluation of As in volcanic and sedimentary rocks collected at 13 sampling sites along the Sierra de Codornices(Guanajuato State,Central Mexico)was carried out.These geologic materials are representative of the dominant hydrogeologic environment.The As content is disseminated in volcanic rocks and the highest contents were obtained in felsic rocks;this information served to identify the hydrogeochemical processes related to the mobilization and transport of arsenic in the aquifer.The mobilization of As is a product of the dissolution of volcanic glass,a process involved in the alkaline desorption that occurs on As-containing mineral surfaces and possibly by the dissolution/desorption of Fe minerals and some clays,all these processes may be accelerated by the geothermal characteristics of the groundwater in the study area.
基金supported by two projects initialed China Geological Survey: “Evaluation on Soil and Water Quality and Geological Survey in Xiong’an New Area (DD20189122)” and “Monitoring and Evaluation on Carrying Capacity of Resource and Environment in BeijingTianjin-Hebei Coordinated Development Zone and Xiong’an New Area (DD20221727)”
文摘China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.