Bipolar membrane electrodialysis(BMED)is considered a state-of-the-art technology for the conversion of salts into acids and bases.However,the low concentration of base generated from a traditional BMED process may li...Bipolar membrane electrodialysis(BMED)is considered a state-of-the-art technology for the conversion of salts into acids and bases.However,the low concentration of base generated from a traditional BMED process may limit the viability of this technology for a large-scale application.Herein,we report an especially designed multistage-batch(two/three-stage-batch)BMED process to increase the base concentration by adjusting different volume ratios in the acid(Vacid),base(Vbase),and salt compartments(Vsalt).The findings indicated that performance of the two-stage-batch with a volume ratio of Vacid:Vbase:Vsalt=1:1:5 was superior in comparison to the threestage-batch with a volume ratio of Vacid:Vbase:Vsalt=1:1:2.Besides,the base concentration could be further increased by exchanging the acid produced in the acid compartment with fresh water in the second stage-batch process.With the two-stage-batch BMED,the maximum concentration of the base can be obtained up to 3.40 mol∙L^(-1),which was higher than the most reported base production by BMED.The low energy consumption and high current efficiency further authenticate that the designed process is reliable,cost-effective,and more productive to convert saline water into valuable industrial commodities.展开更多
Shale oil and gas exploitation not only consumes substantial amounts of freshwater but also generates large quantities of hazardous wastewater. Tremendous research efforts have been invested in developing membrane-bas...Shale oil and gas exploitation not only consumes substantial amounts of freshwater but also generates large quantities of hazardous wastewater. Tremendous research efforts have been invested in developing membrane-based technologies for the treatment of shale oil and gas wastewater. Despite their success at the laboratory scale, membrane processes have not been implemented at full scale in the oil and gas fields. In this article, we analyze the growing demands of wastewater treatment in shale oil and gas production, and then critically review the current stage of membrane technologies applied to the treatment of shale oil and gas wastewater. We focus on the unique niche of those technologies due to their advantages and limitations, and use mechanical vapor compression as the benchmark for comparison. We also highlight the importance of pretreatment as a key component of integrated treatment trains, in order to improve the performance of downstream membrane processes and water product quality. We emphasize the lack of sufficient efforts to scale up existing membrane technologies, and suggest that a stronger collaboration between academia and industry is of paramount importance to translate membrane technologies developed in the laboratory to the practical applications by the shale oil and gas industry.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22061132003 and 22008226)the Key Technologies R&D Program of Anhui Province(Grant No.202003a05020052)the Major Science and Technology Innovation Projects in Shandong Province(Grant No.2019JZZY010511).
文摘Bipolar membrane electrodialysis(BMED)is considered a state-of-the-art technology for the conversion of salts into acids and bases.However,the low concentration of base generated from a traditional BMED process may limit the viability of this technology for a large-scale application.Herein,we report an especially designed multistage-batch(two/three-stage-batch)BMED process to increase the base concentration by adjusting different volume ratios in the acid(Vacid),base(Vbase),and salt compartments(Vsalt).The findings indicated that performance of the two-stage-batch with a volume ratio of Vacid:Vbase:Vsalt=1:1:5 was superior in comparison to the threestage-batch with a volume ratio of Vacid:Vbase:Vsalt=1:1:2.Besides,the base concentration could be further increased by exchanging the acid produced in the acid compartment with fresh water in the second stage-batch process.With the two-stage-batch BMED,the maximum concentration of the base can be obtained up to 3.40 mol∙L^(-1),which was higher than the most reported base production by BMED.The low energy consumption and high current efficiency further authenticate that the designed process is reliable,cost-effective,and more productive to convert saline water into valuable industrial commodities.
文摘Shale oil and gas exploitation not only consumes substantial amounts of freshwater but also generates large quantities of hazardous wastewater. Tremendous research efforts have been invested in developing membrane-based technologies for the treatment of shale oil and gas wastewater. Despite their success at the laboratory scale, membrane processes have not been implemented at full scale in the oil and gas fields. In this article, we analyze the growing demands of wastewater treatment in shale oil and gas production, and then critically review the current stage of membrane technologies applied to the treatment of shale oil and gas wastewater. We focus on the unique niche of those technologies due to their advantages and limitations, and use mechanical vapor compression as the benchmark for comparison. We also highlight the importance of pretreatment as a key component of integrated treatment trains, in order to improve the performance of downstream membrane processes and water product quality. We emphasize the lack of sufficient efforts to scale up existing membrane technologies, and suggest that a stronger collaboration between academia and industry is of paramount importance to translate membrane technologies developed in the laboratory to the practical applications by the shale oil and gas industry.