Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
It is commonly recognized that the cooling rate has a substantial effect on solute partitioning and its resultant microsegregation during solidification.The classical dendrite tip undercooling theory clarifies the mit...It is commonly recognized that the cooling rate has a substantial effect on solute partitioning and its resultant microsegregation during solidification.The classical dendrite tip undercooling theory clarifies the mitigation of microsegregation by increasing the cooling rate.However,most of the studies focused on binary alloys,leaving an open question as to whether the microsegregation of different solutes in a multi-component alloy system exhibits a relieving degree similar to increasing cooling rate.Taking a widely used 6022-type Al alloy(Al-0.76Mg-0.93Si-0.2Fe)as a model alloy,the current study reveals that the microsegregation of Mg gets alleviated to the greatest extent,followed by those of Si and Fe when the cooling rate increases from 5 to 128 K/s.This phenomenon is attributed to the solute-based difference in response to partitioning to cooling rate(denoted as Rk).We propose a theoretical equation to quantify Rk,and the R_(k)values of solute Mg,Si,and Fe successfully explain the rank of solute partitioning in exper-iments.Furthermore,a broad range of R_(k)values of other commonly used alloying elements in Al alloys were calculated and ranked,delivering a handy tool to predict the microsegregation behavior and sol-ubility of different solute elements upon sub-rapid solidification,which is consistent with experimental observation.This framework can also be extended to other multi-component alloy systems.展开更多
The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show th...The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show that the true stress-true strain curves exhibit a peak stress at a critical strain, then the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The peak stresses depend on the temperature compensated strain rate, which can be represented by the Zener-Hollomon parameter Z in the hyperbolic-sine equation with hot deformation activation energy of 244.64 kJ/mol for 7056 alloy and 229.75 kJ/mol for 7150 alloy, respectively, while the peak stresses for the former are lower than those for the latter under the similar compression condition. The deformed microstructures consist of a great amount of precipitates within subgrains in the elongated grains at high Z value and exhibit well formed subgrains in the recrystallized grains at low Z value. The smaller subgrains and greater density of fine precipitates in 7150 alloy are responsible for the high peak stresses because of the substructural strengthening and precipitating hardening compared with 7056 alloy.展开更多
The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceram...The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceramics and corresponding high apparatus of corrosion-wear in molten aluminum and its alloys, were reviewed. The synergistic effect of corrosion and wear was discussed based on corrosion and wear mechanics. The effects of dynamic agitation due to rotating of friction pairs, physical property of liquid metal and size of grain etc., on the corrosion-wear resistance performance were investigated. In addition, the characteristics of corrosion-wear resistance performance of materials in molten aluminum and its alloy were summarized. According to our recent progress referred to kinds of materials, especially a TiA13/Ti3A1C2/A1203 composite, the ceramics/metal composites with a co-continuous structure will be of great advantage in the field of corrosion-wear environment of molten aluminum and its alloys.展开更多
Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract li...Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.展开更多
Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructur...Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.展开更多
An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was reco...An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was recorded under the constant current state during continuous cooling.Solutionizing time,together with starting and finishing temperatures of phase transformation of the alloy can be obtained from relationships of voltage vs time and temperature.A critical cooling rate without detectable phase transition during continuous cooling can be determined.Continuous cooling transformation diagrams of tested samples can be established conveniently based on these results.Microstructure observation and differential scanning calorimetry(DSC) testing were applied to verify the reliability of continuous cooling transformation diagram.展开更多
Mierostruetural development of a commercial 7055 (Al-Zn-Mg-Cu)alloy is studied by transmission electron mieroseope(TEM) during the process of single-ageing for up to 48 h. It is observed that Guinier-Preston (GP...Mierostruetural development of a commercial 7055 (Al-Zn-Mg-Cu)alloy is studied by transmission electron mieroseope(TEM) during the process of single-ageing for up to 48 h. It is observed that Guinier-Preston (GP) zones are formed on { 111} planes when the sample is aged for a short time and grows up gradually with increase of ageing time. η' phase is formsed after ageing for 4 h at 120℃, having the orientation relationship with the matrix as[0 0 0 1]η'//[1 1^- 1]Al and (1 0 1^- 1)η'//(1 1 0)Al.η phase starts to occur after 24 h ageing and has an orientation relationship with matrix as [1^- 1 0 0]η//[1 1 0]Al and (0 0 0 1)η// (1 1 1)Al. Since the density of both η' phase and η phase particles is much lower than that of GP zone on aged alloy, GP zones are important to control the properties of the alloy.展开更多
Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydroly...Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.展开更多
Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The u...Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints.展开更多
The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the age...The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the ageing response of the 2024 aluminum alloy is accelerated when treated by cold deformation after solution treatment,and the tensile strength is increased to about 140 MPa while the elongation still keeps above 8%.However,compared with the 2024 alloys,although the aging response of the cold deformed 7A04 aluminum alloy is accelerated,the tensile strength has not changed obviously and the elongation is even decreased drastically.The results of TEM observation show that the S’ phase inside the dislocation cells and at the boundaries of the dislocation cells of the 2024 aluminum alloy has a uniform distribution.But in 7A04 aluminum alloy the club-shaped η’ phase forms at the boundaries of dislocation cells even on dislocation lines,while there still exists small spheric G.P zone in the region with less dislocation.In addition the precipitates in 7A04 alloy with cold rolling present more obvious tendency of growth and coarsening than those without cold rolling.It is indicated that the coherent strain energy of the cylinder formed G.P zones with matrix in the 2024 alloy is smaller than that of the spherical G.P zone in 7A04 alloy,for which a different distribution of precipitates and different effect of strengthening are caused in artificial ageing after resolution treatment and large cold deformation.展开更多
The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous cast...The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous casting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influenced segregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of a proper frequency. Electromagnetic frequency plays a significant role in solute redistribution; low frequency is more efficient for promoting solution of alloying elements.展开更多
The morphology and chemical compositions of surface and corrosion phases for two aluminum alloys(7075 and 2024 ) in the aqueous mediums containing sulfate reducing bacteria(SRB) were studied by the methods of scanning...The morphology and chemical compositions of surface and corrosion phases for two aluminum alloys(7075 and 2024 ) in the aqueous mediums containing sulfate reducing bacteria(SRB) were studied by the methods of scanning electron microscopy (SEM) and energy dispersive x ray analysis (EDXA). The results showed that serious pitting corrosion took place when aluminum alloys were exposed in the mediums containing SRB, whereas no pitting corrosion were found on the surfaces of aluminum alloys only exposed in blank mediums non containing SRB. It was demonstrated with EDXA that corrosion of aluminum alloys exposed in the solutions containing SRB, whereas the corrosion in the solution non containing microorganisms was attributed to the presence of chloride ions(Cl ).展开更多
In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content...In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings. Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface. There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase. And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.展开更多
The effects of ultrasonic vibration(UV)treatment on microstructure of semi-solid aluminum alloys and the application of UV in rheocasting process are reviewed.Good semi-solid slurry can be produced by high-intensity U...The effects of ultrasonic vibration(UV)treatment on microstructure of semi-solid aluminum alloys and the application of UV in rheocasting process are reviewed.Good semi-solid slurry can be produced by high-intensity UV process for aluminum alloys.The microstructures of Al-Si,Al-Mg and Al-Cu alloys produced by rheocasting assisted with UV are compact and with fine grains.The mechanical properties of the UV treated alloys are increased by about 20%-30%.Grain refinement of the alloys is generally considered because of cavitation and acoustic streaming caused by UV.Apart from these mechanisms,a hypothesis of the fuse of dendrite root caused by capillary infiltration in the ultrasonic field,as well as a mechanism of crystallites falling off from the mould-wall and crystal multiplication by mechanical vibration effect in indirect ultrasonic vibration are proposed to explain the microstructure evolution of the alloys.展开更多
The corrosion behavior of aluminum alloys 1060 and 2A12 in a 10 mM Na2SO4+5 mM KI solution was investigated by scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM). The potential topo...The corrosion behavior of aluminum alloys 1060 and 2A12 in a 10 mM Na2SO4+5 mM KI solution was investigated by scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM). The potential topography and corrosion morphology results show that the potential of the sample surface over the same area changes with the increase of immersion time. The corrosion area becomes large, and the potential becomes more negative. The corrosion potential of the 2A12 alloy surface is lower than that of 1060 aluminum, and 2A12 alloy becomes easily corrosive. This is the reason that preferential dissolution in the boundary region of some intermetallic particles (IMPs) occurs and different dissolution behaviors are associated with different types of IMPs because of different potentials.展开更多
Welding is a vital component of several industries such as automotive,aerospace,robotics,and construction.Without welding,these industries utilize aluminum alloys for the manufacturing of many components or systems.Ho...Welding is a vital component of several industries such as automotive,aerospace,robotics,and construction.Without welding,these industries utilize aluminum alloys for the manufacturing of many components or systems.However,fusion welding of aluminum alloys is challenging due to several factors,including the presence of non-heat-treatable alloys,porosity,solidification,and liquation of cracks.Many manufacturers adopt conventional in-air friction stir welding(FSW)to weld metallic alloys and dissimilar materials.Many researchers reported the drawbacks of this traditional in-air FSW technique in welding metallic and polymeric materials in general and aluminum alloys and aluminum matrix composites in specific.A number of FSW techniques were developed recently,such as underwater friction stir welding(UFSW),vibrational friction-stir welding(VFSW),and others,for welding of aluminum alloy joints to overcome the issues of welding using conventional FSW.Therefore,the main objective of this review is to summarize the recent trends in FSW process of aluminum alloys and aluminum metal matrix composites(Al MMCs).Also,it discusses the effect of welding parameters of the traditional and state-of-the-art developed FSW techniques on the welding quality and strength of aluminum alloys and Al MMCs.Comparison among the techniques and advantages and limitations of each are considered.The review suggests that VFSW is a viable option for welding aluminum joints due to its energy efficiency,economic cost,and versatile modifications that can be employed based on the application.This review also illustrated that significantly less attention has been paid to FSW of Al-MMCs and considerable attention is demanded to produce qualified joint.展开更多
The hot working behaviors of 2024 and 7075 aluminum alloys were studied through constitutive analysis based on a physically-based approach which accounts for the dependence of the elastic modulus and the self-diffusio...The hot working behaviors of 2024 and 7075 aluminum alloys were studied through constitutive analysis based on a physically-based approach which accounts for the dependence of the elastic modulus and the self-diffusion coefficient of aluminum on temperature. It was demonstrated that the lattice self-diffusion activation energy of aluminum(142 k J/mol) can be used in the Zener-Hollomon parameter's formula as the deformation activation energy and the theoretical exponent of 5 can be set in the modified hyperbolic sine law to describe the peak flow stresses. By consideration of physically-based material's parameters, it was possible to conduct a comparative study on the hot flow stress of 2024 and 7075 aluminum alloys. It was concluded that the used approach in the current work can be considered as a versatile tool in future comparative hot working studies, especially in studies dedicated to alloy development.展开更多
Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx...Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx and 7xxx aluminium alloys are susceptible to SCC. Among them, 7xxx series aluminium alloys have specific application in aerospace, military and structural industries due to superior mechanical properties. In these high strength 7xxx aluminium alloys, SCC plays a vital factor of consideration, as these failures are catastrophic during the service. The understanding of SCC behaviour possesses critical challenge for this alloy. The main aim of this review paper is to understand the effect of constituent alloying elements on the response of microstructural variation in various heat-treated conditions on SCC behavior. Further, review was made for improving the SCC resistance using thermomechanical treatments and by surface modifications of 7xxx alloys. Apart from a brief review on SCC of 7xxx alloys, this paper presents the effect of stress and pre-strain, effect of constituent alloying elements in the alloy, and the effect of environments on SCC behaviour. In addition, the SCC behaviours of weldments, 7xxx metal matrix composites and also laser surface modifications were also reviewed.展开更多
Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with ex...Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.展开更多
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金Financial support from the National Natural Science Foundation of China(Nos.52222409,52074132,U19A2084)the National Key Research and Development Program(No.2022YFE0122000)are greatly acknowledged.
文摘It is commonly recognized that the cooling rate has a substantial effect on solute partitioning and its resultant microsegregation during solidification.The classical dendrite tip undercooling theory clarifies the mitigation of microsegregation by increasing the cooling rate.However,most of the studies focused on binary alloys,leaving an open question as to whether the microsegregation of different solutes in a multi-component alloy system exhibits a relieving degree similar to increasing cooling rate.Taking a widely used 6022-type Al alloy(Al-0.76Mg-0.93Si-0.2Fe)as a model alloy,the current study reveals that the microsegregation of Mg gets alleviated to the greatest extent,followed by those of Si and Fe when the cooling rate increases from 5 to 128 K/s.This phenomenon is attributed to the solute-based difference in response to partitioning to cooling rate(denoted as Rk).We propose a theoretical equation to quantify Rk,and the R_(k)values of solute Mg,Si,and Fe successfully explain the rank of solute partitioning in exper-iments.Furthermore,a broad range of R_(k)values of other commonly used alloying elements in Al alloys were calculated and ranked,delivering a handy tool to predict the microsegregation behavior and sol-ubility of different solute elements upon sub-rapid solidification,which is consistent with experimental observation.This framework can also be extended to other multi-component alloy systems.
基金Projects (2008CB617608, 2009CB623704) supported by the National Basic Research Program of China
文摘The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show that the true stress-true strain curves exhibit a peak stress at a critical strain, then the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The peak stresses depend on the temperature compensated strain rate, which can be represented by the Zener-Hollomon parameter Z in the hyperbolic-sine equation with hot deformation activation energy of 244.64 kJ/mol for 7056 alloy and 229.75 kJ/mol for 7150 alloy, respectively, while the peak stresses for the former are lower than those for the latter under the similar compression condition. The deformed microstructures consist of a great amount of precipitates within subgrains in the elongated grains at high Z value and exhibit well formed subgrains in the recrystallized grains at low Z value. The smaller subgrains and greater density of fine precipitates in 7150 alloy are responsible for the high peak stresses because of the substructural strengthening and precipitating hardening compared with 7056 alloy.
基金Project(51271080) supported by the National Natural Science Foundation of China
文摘The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceramics and corresponding high apparatus of corrosion-wear in molten aluminum and its alloys, were reviewed. The synergistic effect of corrosion and wear was discussed based on corrosion and wear mechanics. The effects of dynamic agitation due to rotating of friction pairs, physical property of liquid metal and size of grain etc., on the corrosion-wear resistance performance were investigated. In addition, the characteristics of corrosion-wear resistance performance of materials in molten aluminum and its alloy were summarized. According to our recent progress referred to kinds of materials, especially a TiA13/Ti3A1C2/A1203 composite, the ceramics/metal composites with a co-continuous structure will be of great advantage in the field of corrosion-wear environment of molten aluminum and its alloys.
基金Project(U1407137)supported by the National Natural Science Foundation of China
文摘Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.
基金Project (2005CB623707) supported by the National Basic Research Program of China
文摘Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.
文摘An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was recorded under the constant current state during continuous cooling.Solutionizing time,together with starting and finishing temperatures of phase transformation of the alloy can be obtained from relationships of voltage vs time and temperature.A critical cooling rate without detectable phase transition during continuous cooling can be determined.Continuous cooling transformation diagrams of tested samples can be established conveniently based on these results.Microstructure observation and differential scanning calorimetry(DSC) testing were applied to verify the reliability of continuous cooling transformation diagram.
文摘Mierostruetural development of a commercial 7055 (Al-Zn-Mg-Cu)alloy is studied by transmission electron mieroseope(TEM) during the process of single-ageing for up to 48 h. It is observed that Guinier-Preston (GP) zones are formed on { 111} planes when the sample is aged for a short time and grows up gradually with increase of ageing time. η' phase is formsed after ageing for 4 h at 120℃, having the orientation relationship with the matrix as[0 0 0 1]η'//[1 1^- 1]Al and (1 0 1^- 1)η'//(1 1 0)Al.η phase starts to occur after 24 h ageing and has an orientation relationship with matrix as [1^- 1 0 0]η//[1 1 0]Al and (0 0 0 1)η// (1 1 1)Al. Since the density of both η' phase and η phase particles is much lower than that of GP zone on aged alloy, GP zones are important to control the properties of the alloy.
基金Project(2010CB635107) supported by the Major State Basic Research Development Program of ChinaProjects(51202064,51472081) supported by the National Natural Science Foundation of China+2 种基金Project(2013CFA085) supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010016) supported by Wuhan Youth Chenguang Program of Science and Technology,ChinaProject([2013]2-22) supported by the Open Fund of Key Laboratory of Green Materials for Light Industry of Hubei Province,China
文摘Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.
基金Projects(51075104,50975054) supported by the National Natural Science Foundation of ChinaProject(2010RFQXG020) supported by the Harbin Excellence Talents Program,China
文摘Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints.
基金Project(50571069) supported by NSFC and Project(05A061) education department of Hunan province,China
文摘The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the ageing response of the 2024 aluminum alloy is accelerated when treated by cold deformation after solution treatment,and the tensile strength is increased to about 140 MPa while the elongation still keeps above 8%.However,compared with the 2024 alloys,although the aging response of the cold deformed 7A04 aluminum alloy is accelerated,the tensile strength has not changed obviously and the elongation is even decreased drastically.The results of TEM observation show that the S’ phase inside the dislocation cells and at the boundaries of the dislocation cells of the 2024 aluminum alloy has a uniform distribution.But in 7A04 aluminum alloy the club-shaped η’ phase forms at the boundaries of dislocation cells even on dislocation lines,while there still exists small spheric G.P zone in the region with less dislocation.In addition the precipitates in 7A04 alloy with cold rolling present more obvious tendency of growth and coarsening than those without cold rolling.It is indicated that the coherent strain energy of the cylinder formed G.P zones with matrix in the 2024 alloy is smaller than that of the spherical G.P zone in 7A04 alloy,for which a different distribution of precipitates and different effect of strengthening are caused in artificial ageing after resolution treatment and large cold deformation.
基金This research was supported by Major State Basic Research Projects of China, Grant No.:G1999064905 and the National Natural Science Foundation of China, No.59974009.
文摘The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous casting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influenced segregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of a proper frequency. Electromagnetic frequency plays a significant role in solute redistribution; low frequency is more efficient for promoting solution of alloying elements.
文摘The morphology and chemical compositions of surface and corrosion phases for two aluminum alloys(7075 and 2024 ) in the aqueous mediums containing sulfate reducing bacteria(SRB) were studied by the methods of scanning electron microscopy (SEM) and energy dispersive x ray analysis (EDXA). The results showed that serious pitting corrosion took place when aluminum alloys were exposed in the mediums containing SRB, whereas no pitting corrosion were found on the surfaces of aluminum alloys only exposed in blank mediums non containing SRB. It was demonstrated with EDXA that corrosion of aluminum alloys exposed in the solutions containing SRB, whereas the corrosion in the solution non containing microorganisms was attributed to the presence of chloride ions(Cl ).
基金This work was financially supported bythe Doctoral Foundation ofYanshan University(B41)theScience and Technology Foundation ofYanshan University(YDJJ0169).
文摘In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings. Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface. There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase. And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.
文摘The effects of ultrasonic vibration(UV)treatment on microstructure of semi-solid aluminum alloys and the application of UV in rheocasting process are reviewed.Good semi-solid slurry can be produced by high-intensity UV process for aluminum alloys.The microstructures of Al-Si,Al-Mg and Al-Cu alloys produced by rheocasting assisted with UV are compact and with fine grains.The mechanical properties of the UV treated alloys are increased by about 20%-30%.Grain refinement of the alloys is generally considered because of cavitation and acoustic streaming caused by UV.Apart from these mechanisms,a hypothesis of the fuse of dendrite root caused by capillary infiltration in the ultrasonic field,as well as a mechanism of crystallites falling off from the mould-wall and crystal multiplication by mechanical vibration effect in indirect ultrasonic vibration are proposed to explain the microstructure evolution of the alloys.
基金supported by the National Natural Science Foundation of China (No.50499331)the National Science and Technology Basic Conditional Platform (No.2005DTA10400)
文摘The corrosion behavior of aluminum alloys 1060 and 2A12 in a 10 mM Na2SO4+5 mM KI solution was investigated by scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM). The potential topography and corrosion morphology results show that the potential of the sample surface over the same area changes with the increase of immersion time. The corrosion area becomes large, and the potential becomes more negative. The corrosion potential of the 2A12 alloy surface is lower than that of 1060 aluminum, and 2A12 alloy becomes easily corrosive. This is the reason that preferential dissolution in the boundary region of some intermetallic particles (IMPs) occurs and different dissolution behaviors are associated with different types of IMPs because of different potentials.
基金United Arab Emirates University (UAEU), Al-Ain, UAE, and Sultan Qaboos University (SQU), Muscat, Sultanate of Oman, for providing research support through a collaborative research project (UAEU: 31N270)。
文摘Welding is a vital component of several industries such as automotive,aerospace,robotics,and construction.Without welding,these industries utilize aluminum alloys for the manufacturing of many components or systems.However,fusion welding of aluminum alloys is challenging due to several factors,including the presence of non-heat-treatable alloys,porosity,solidification,and liquation of cracks.Many manufacturers adopt conventional in-air friction stir welding(FSW)to weld metallic alloys and dissimilar materials.Many researchers reported the drawbacks of this traditional in-air FSW technique in welding metallic and polymeric materials in general and aluminum alloys and aluminum matrix composites in specific.A number of FSW techniques were developed recently,such as underwater friction stir welding(UFSW),vibrational friction-stir welding(VFSW),and others,for welding of aluminum alloy joints to overcome the issues of welding using conventional FSW.Therefore,the main objective of this review is to summarize the recent trends in FSW process of aluminum alloys and aluminum metal matrix composites(Al MMCs).Also,it discusses the effect of welding parameters of the traditional and state-of-the-art developed FSW techniques on the welding quality and strength of aluminum alloys and Al MMCs.Comparison among the techniques and advantages and limitations of each are considered.The review suggests that VFSW is a viable option for welding aluminum joints due to its energy efficiency,economic cost,and versatile modifications that can be employed based on the application.This review also illustrated that significantly less attention has been paid to FSW of Al-MMCs and considerable attention is demanded to produce qualified joint.
文摘The hot working behaviors of 2024 and 7075 aluminum alloys were studied through constitutive analysis based on a physically-based approach which accounts for the dependence of the elastic modulus and the self-diffusion coefficient of aluminum on temperature. It was demonstrated that the lattice self-diffusion activation energy of aluminum(142 k J/mol) can be used in the Zener-Hollomon parameter's formula as the deformation activation energy and the theoretical exponent of 5 can be set in the modified hyperbolic sine law to describe the peak flow stresses. By consideration of physically-based material's parameters, it was possible to conduct a comparative study on the hot flow stress of 2024 and 7075 aluminum alloys. It was concluded that the used approach in the current work can be considered as a versatile tool in future comparative hot working studies, especially in studies dedicated to alloy development.
文摘Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx and 7xxx aluminium alloys are susceptible to SCC. Among them, 7xxx series aluminium alloys have specific application in aerospace, military and structural industries due to superior mechanical properties. In these high strength 7xxx aluminium alloys, SCC plays a vital factor of consideration, as these failures are catastrophic during the service. The understanding of SCC behaviour possesses critical challenge for this alloy. The main aim of this review paper is to understand the effect of constituent alloying elements on the response of microstructural variation in various heat-treated conditions on SCC behavior. Further, review was made for improving the SCC resistance using thermomechanical treatments and by surface modifications of 7xxx alloys. Apart from a brief review on SCC of 7xxx alloys, this paper presents the effect of stress and pre-strain, effect of constituent alloying elements in the alloy, and the effect of environments on SCC behaviour. In addition, the SCC behaviours of weldments, 7xxx metal matrix composites and also laser surface modifications were also reviewed.
基金financial supports from the Shenzhen Science and Technology Innovation Commission, China (Nos. KQTD20170328154443162, JCYJ20180305123432756)。
文摘Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.