期刊文献+
共找到1,940篇文章
< 1 2 97 >
每页显示 20 50 100
Tailoring Carbon Distribution inα/γPhase of Ductile Iron and Its Effects on Thermal Conductivity
1
作者 刘琛 杜玉洲 +4 位作者 YING Tao ZHANG Liandong ZHANG Xinyu DONG Dan JIANG Bailing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期645-651,共7页
The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM... The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM and SEM.Results showed that the microstructure of as-cast ductile iron was composed of spheroidal graphite,ferrite with the volume of 80%,and a small amount of pearlite,and quenched ductile iron was composed of spheroidal graphite,coarse/fine acicular martensite(α_(M)phase)and high-carbon retained austenite(γphase).The volume fraction of retained austensite and its carbon content for direct quenched ductile iron and tepmered ductile iron were quantitatively analysed by XRD.Results revealed that carbon atoms diffused fromα_(M)phase toγphase during tempering at low temperatures,which resulted in carbon content in retainedγphase increasing from 1.2 wt%for the direct quenched sample to about 1.9 wt%for the tempered samples.Consequently,the lattice distortion was significantly reduced and gave rise to an increase of thermal conductivity for ductile iron. 展开更多
关键词 ductile iron carbon distribution retained austenite thermal conductivity lattice distortion
下载PDF
A Bidimensional Finite Element Study of Crack Propagation in Austempered Ductile Iron
2
作者 Gustavo von Zeska de França Roberto Luís de Assumpção +1 位作者 Marco Antonio Luersen Carlos Henrique da Silva 《Computers, Materials & Continua》 SCIE EI 2023年第11期1411-1424,共14页
Austempered ductile iron(ADI)is composed of an ausferritic matrix with graphite nodules and has a wide range of applications because of its high mechanical strength,fatigue resistance,and wear resistance compared to o... Austempered ductile iron(ADI)is composed of an ausferritic matrix with graphite nodules and has a wide range of applications because of its high mechanical strength,fatigue resistance,and wear resistance compared to other cast irons.The amount and size of the nodules can be controlled by the chemical composition and austenitizing temperature.As the nodules have lower stiffness than the matrix and can act as stress concentrators,they influence crack propagation.However,the crack propagation mechanism in ADI is not yet fully understood.In this study,we describe a numerical investigation of crack propagation in ADIs subjected to cyclic loading.The numerical model used to calculate the stress intensity factors in the material under the given conditions is built with the aid of Abaqus commercial finite element code.The crack propagation routine,which is based on the Paris law,is implemented in Python.The results of the simulation show that the presence of a nodule generates a shear load on the crack tip.Consequently,even under uniaxial tensile loading,the presence of the nodule yields a non-zero stress intensity factor in mode II,resulting in a deviation in the crack propagation path.This is the primary factor responsible for changing the crack propagation direction towards the nodule.Modifying the parameters,for example,increasing the nodule size or decreasing the distance between the nodule and crack tip,can intensify this effect.In simulations comparing two different ADIs with the same graphite fraction area,the crack in the material with more nodules reaches another nodule in a shorter propagation time(or shorter number of cycles).This suggests that the high fatigue resistance observed in ADIs may be correlated with the number of nodules intercepted by a crack and the additional energy required to nucleate new cracks.In summary,these findings contribute to a better understanding of crack propagation in ADIs,provide insights into the relationship between the presence of nodules and the fatigue resistance of these materials,and support studies that associate the increased fatigue resistance with a higher number of graphite nodules.These results can also help justify the enhanced fatigue resistance of ADIs when compared to other cast irons. 展开更多
关键词 Austempered ductile iron(ADI) FATIGUE crack propagation graphite nodule
下载PDF
Effects of Alloying Elements on the Microstructures and Mechanical Properties of Heavy Section Ductile Cast Iron 被引量:14
3
作者 G.S.Cho K.H.Choe +1 位作者 K.W.Lee A.Ikenaga 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期97-101,共5页
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea... The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries. 展开更多
关键词 Heavy section ductile cast iron Alloying elements As-cast microstructures As-cast mechanical properties
下载PDF
Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars 被引量:7
4
作者 Chun-jie Xu Pan Dai +3 位作者 Zheng-yang Zhang Zhong-ming Zhang Jin-cheng Wang Yong-hui Liu 《China Foundry》 SCIE CAS 2015年第2期104-110,共7页
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters(i.e. austenitizing temperature and time, and austempering temperature and ti... In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters(i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting(HCC). The results show that the major factors influencing the hardness of austempered ductile iron(ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be effi ciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the following process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of fi ne acicular ferrite and a small amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93% and 25.7 J, respectively. 展开更多
关键词 horizontal continuous casting(HCC) ductile iron dense bars austempered ductile iron(ADI) microstructure and mechanical properties orthogonal test
下载PDF
A study on controlled cooling process for making bainitic ductile iron 被引量:4
5
作者 Y.H.Jiang R.Zhou D.H.Lu 《China Foundry》 SCIE CAS 2004年第S1期29-31,共3页
In the present research, TTT curve of bainitic ductile iron under the condition of controlled cooling was generated. The cooling rate of grinding ball and its temperature distribution were also measured at the same ti... In the present research, TTT curve of bainitic ductile iron under the condition of controlled cooling was generated. The cooling rate of grinding ball and its temperature distribution were also measured at the same time. It can be concluded that the bainitic zone of TTT curve is separated from the pearlitic zone. As compared to the water-quenching condition, more even cooling rate and temperature distribution can be achieved in the controlled cooling process. The controlled cooling can keep away from pearlitic zone in the high temperature cooling stage and produce similar results to the process of traditional isothermal cooling with a low cooling rate in the low temperature cooling stage. 展开更多
关键词 controlled cooling grinding ball ductile iron bainitic ductile iron austenite-ferrite ductile iron BAINITE
下载PDF
Production of carbide-free thin ductile iron castings 被引量:7
6
作者 M. Ashraf Sheikh 《Journal of University of Science and Technology Beijing》 CSCD 2008年第5期552-555,共4页
The fast cooling rate of thin ductile iron castings requires special consideration to produce carbide-free castings. Extraordinary care was taken to select the charge to produce castings of 100-mm long round bars with... The fast cooling rate of thin ductile iron castings requires special consideration to produce carbide-free castings. Extraordinary care was taken to select the charge to produce castings of 100-mm long round bars with 16-mm diameter. The castings show the presence of carbides in the bars. Seven melts were made with different temperatures and with different compositions to get rid of carbides. After chemical analyses,it was found that the extra purity of the charge with less than 0.008wt% sulfur in the castings was the cause of carbides. To remove the carbides from the castings,sulfur should be added to the charge. 展开更多
关键词 CASTING ductile iron carbides FLUIDITY
下载PDF
Thermal and microstructural characterization of a novel ductile cast iron modified by aluminum addition 被引量:4
7
作者 Gülsah Aktas Celik Maria-Ioanna TTzini +2 位作者 Seyda Polat SHakan Atapek Gregory NHaidemenopoulos 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期190-199,共10页
In high-temperature applications,like exhaust manifolds,cast irons with a ferritic matrix are mostly used.However,the increasing demand for higher-temperature applications has led manufacturers to use additional expen... In high-temperature applications,like exhaust manifolds,cast irons with a ferritic matrix are mostly used.However,the increasing demand for higher-temperature applications has led manufacturers to use additional expensive materials such as stainless steels and Ni-resist austenitic ductile cast irons.Thus,in order to meet the demand while using low-cost materials,new alloys with improved high-temperature strength and oxidation resistance must be developed.In this study,thermodynamic calculations with Thermo-Calc software were applied to study a novel ductile cast iron with a composition of 3.5wt%C,4wt%Si,1wt%Nb,0‒4wt%Al.The designed compositions were cast,and thermal analysis and microstructural characterization were performed to validate the calculations.The lowest critical temperature of austenite to pearlite eutectoid transformation,i.e.,A1,was calculated,and the solidification sequence was determined.Both calculations and experimental data revealed the importance of aluminum addition,as the A1 increased by increasing the aluminum content in the alloys,indicating the possibility of utilizing the alloys at higher temperature.The experimental data validated the transformation temperature during solidification and at the solid state and confirmed the equilibrium phases at room temperature as ferrite,graphite,and MC-type carbides. 展开更多
关键词 ductile cast iron alloy design THERMO-CALC high-temperature material
下载PDF
Study on Thermal Simulation of Solidification in Heavy Section Ductile Iron 被引量:5
8
作者 Zhenhua LI Yanxiang LI Huiyuan GENG Jianjun CHEN Chunyan ZHOU Junfa CHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期122-124,共3页
Using an artificial intelligent instrument and a computer feedback control method, a new thermal simulation systemis studied. Based on numerical simulation of casting solidification, a sample in the new system success... Using an artificial intelligent instrument and a computer feedback control method, a new thermal simulation systemis studied. Based on numerical simulation of casting solidification, a sample in the new system successfully simulatedthe solidification of heavy section ductile iron. The results show that the new thermal simulation system is accurateand reliable. Not only cooling curve but also graphite in the center of the thermal sample and the heavy sectionductile iron is identical. Realization of accurate thermal simulation of solidification in heavy section ductile iron willbe helpful for studying formation mechanism and controlling graphite degeneration in heavy section ductile iron. 展开更多
关键词 THERMAL simulation HEAVY SECTION ductile iron SOLIDIFICATION
下载PDF
Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron 被引量:4
9
作者 Song Liang Guo Erjun Tan Changlong 《China Foundry》 SCIE CAS 2014年第2期125-131,共7页
To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the ... To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidifi cation cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the fi ve castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture. 展开更多
关键词 heavy section ductile cast iron Bi addition cooling rate graphite morphology mechanical properties
下载PDF
Development of thermal simulation system for heavy section ductile iron solidification 被引量:4
10
作者 Z.H.Li H.Y.Geng Y.X.Li 《China Foundry》 SCIE CAS 2004年第S1期25-28,共4页
A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate t... A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ±0.5%. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5% and 10%, respectively. 展开更多
关键词 SOLIDIFICATION thermal simulation heavy section ductile iron
下载PDF
Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron 被引量:3
11
作者 Liu Zhe Chen Weiping Deng Yu 《China Foundry》 SCIE CAS 2012年第2期114-118,共5页
Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons.In the present research,the effects of the cooling rate and antimony addition on the graphite morphology and mechanical... Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons.In the present research,the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied.Three ductile iron castings were prepared through solidification under cooling conditions S(slow),M(medium)and F(fast).The cooling rates around the equilibrium eutectic temperature (1,150℃)for these cooling conditions(S,M and F)were set at 0.21℃·min -1 ,0.32℃·min -1 and 0.37℃·min -1 , respectively.In addition,four ductile iron castings were prepared by adding 0.01%,0.02%,0.03%and 0.04%(by weight)antimony,respectively under the slow cooling condition.The results show that the nodularity index,tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate,while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules.Furthermore,for the four antimony containing castings,the graphite morphology and tensile strength are also improved by the antimony additions,and the effect of antimony addition is intensified when the addition increases from 0.01%to 0.03%.Moreover,the rare earth elements(REE)/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile 展开更多
关键词 ductile iron cooling rate ANTIMONY graphite morphology mechanical properties
下载PDF
Effect of alloying elements on austempered ductile iron(ADI) properties and its process:Review 被引量:3
12
作者 Amir Sadighzadeh Benam 《China Foundry》 SCIE CAS 2015年第1期54-70,共17页
Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called... Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed. 展开更多
关键词 austempered ductile iron(ADI) alloying element processing window austemperability
下载PDF
Effect of Lanthanum on Nodule Count and Nodularity of Ductile Iron 被引量:2
13
作者 M. Ashraf Sheikh Javed Iqbal 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第5期533-536,共4页
The present study aims at finding out the effect of the addition of a single rare earth element, that is, lanthanum on the nodularity and nodule count of ductile iron under controlled conditions. For this purpose, fou... The present study aims at finding out the effect of the addition of a single rare earth element, that is, lanthanum on the nodularity and nodule count of ductile iron under controlled conditions. For this purpose, four melts with different compositions were made, using a 28 kg inductotherm medium frequency induction furnace. The temperature was carefully maintained between 1400 and 1450 ℃ for these heats. A good quality charge consisting of Sorel metal, ferrosilicon, Swedish iron, ferrosilicon magnesium, and ferrosilicon lanthanum was used for the production of melts. A vertically parted sand mould was used for casting of 10 test bars made from local silica sand. Standard coin samples were chill-cast to conduct chemical analysis of the ductile iron. Mierostructure study of the samples was conducted using a Leica optical microscope. Nodule count and nodularity of the samples were carried out using an image analyzer. The results obtained indicated that with the increased addition of lanthanum the nodule count of ductile iron increased, thus making it evident that it played a significant role in increasing the mechanical properties. The highest nodule count of 467 was obtained with the addition of 0.03% lanthanum. However, the effect of lanthanum on nodularity was negligible with nodularity ranging from 81% to 83 %. 展开更多
关键词 ductile iron mischmetal nodulization nodulafity nodule count rare earths
下载PDF
Effects of forced cooling on mechanical properties and fracture behavior of heavy section ductile iron 被引量:3
14
作者 Er-jun Guo Liang Song +1 位作者 Li-ping Wang Dong-rong Liu 《China Foundry》 SCIE 2015年第6期398-405,共8页
To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with dif... To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with different cooling processes were prepared: casting A was prepared in a totally sand mold, and casting B was prepared in a sand mold with two chilling blocks placed on the left and right sides of the mold. Three positions in each casting with different solidification cooling rates were chosen. In-situ SEM tensile experiment was used to observe the dynamic tensile process. Fracture analysis was conducted to study the influence of vermicular and slightly irregular spheroidal graphite on the fracture behavior of heavy section ductile iron. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings all decrease with decreasing cooling rate. With the increase of solidification time, the fracture mechanism of conventional casting A changes from ductile fracture to brittle fracture, and that of casting B with forced cooling changes from ductile fracture to a mixture of ductile-brittle fracture. 展开更多
关键词 heavy section ductile iron forced cooling in-situ SEM tensile fracture toughness
下载PDF
Precipitation and evolution of nodular graphite during solidification process of ductile iron 被引量:6
15
作者 Jin-hai Liu Jian-shuai Yan +4 位作者 Xue-bo Zhao Bin-guo Fu Hai-tao Xue Gui-xian Zhang Peng-hui Yang 《China Foundry》 SCIE 2020年第4期260-271,共12页
The quantity and morphology of spheroidal graphite have an important effect on the properties of ductile iron, and the characteristics of spheroidal graphite are determined by the solidification process. The aim of th... The quantity and morphology of spheroidal graphite have an important effect on the properties of ductile iron, and the characteristics of spheroidal graphite are determined by the solidification process. The aim of this work is to explore the precipitation and evolution of graphite nodules in hypoeutectic, eutectic, and hypereutectic ductile irons by thermal analysis, liquid quenching and metallographic technique. Results show that hypoeutectic ductile iron has the longest solidification time and the lowest eutectic temperature;eutectic ductile iron has the shortest solidification time;hypereutectic ductile iron has the highest eutectic temperature. After solidification is completed, hypoeutectic ductile iron has the lowest nodule count, nodularity and graphite fraction;eutectic ductile iron has the highest nodule count, nodularity and the smallest nodule diameter;hypereutectic has the highest nodule diameter and graphite fraction. The nucleation and growth of graphite nodules in hypereutectic ductile iron starts before bulk eutectic crystallization stage, however, the precipitation and evolution of graphite nodules of hypoeutectic and eutectic ductile irons mainly occur in the eutectic crystallization stage. The graphite precipitated in eutectic crystallization of hypoeutectic, eutectic, and hypereutectic ductile irons, are 61%, 68% and 43% of total graphite volume fraction, respectively. Simultaneously, there are plenty of austenite dendrites in hypoeutectic and hypereutectic ductile irons, which are prone to shrinkage defects. Therefore, the eutectic ductile iron has the smallest shrinkage tendency. 展开更多
关键词 ductile iron carbon equivalent graphite nodules SOLIDIFICATION thermal analysis liquid quenching
下载PDF
Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron 被引量:2
16
作者 vinayak dakre d.r.peshwe +1 位作者 s.u.pathak ajay likhite 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第7期770-778,共9页
The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent duc... The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established. 展开更多
关键词 low carbon equivalent ductile iron (LCEDI) caxbidic austempered ductile iron (CADI) wear test austenitization temperature impact strength
下载PDF
EFFECT OF SILICON ON PRODUCING DUCTILE IRON WITH COMPLEX STRUCTURE OF BAINITE AND MARTENSITE 被引量:2
17
作者 Y.P.Zhang J.X.Zhu +1 位作者 Y.Q.Wang J.Y.Su 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第1期25-28,共4页
This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicat... This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicate. The result of thc experiments shows that the austenizing temperature should rise with increasing silicon content, otherwise much undissolved ferrite is present in the matrix after quenching. However the undissolvec ferrite can be decreased greatly or even eliminated by adding appropriate amount of ooron. On this condition, the amount of bainite gets increasing and the amount of residual austenite decreasing with the silicon cortent increasing. An approach has also been made to the mechanism of the effect of silicon on the transformation of bainite in ductile iron. The T.T.T. curves measured show that the increase of sllicon content causes the curve to shift to the left. This is quite different from the fact in steel. 展开更多
关键词 ductile iron silicon content BAINITE MARTENSITE
下载PDF
Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with diferent Ni additions 被引量:2
18
作者 Zhang Xinning Qu Yingdong +1 位作者 Yang Hongwang Li Rongde 《China Foundry》 SCIE CAS 2013年第5期310-314,共5页
Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of ... Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃. 展开更多
关键词 NI ductile iron low temperature impact toughness fracture morphology
下载PDF
Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron 被引量:2
19
作者 Bin-guo Fu Zhuo-qing Li +3 位作者 Xue-bo Zhao Zhen Shen Guo-lu Li Jin-hai Liu 《China Foundry》 SCIE 2016年第5期346-351,共6页
The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal ... The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition. 展开更多
关键词 ultra-low carbon ductile cast iron cooling rate nucleation core spheroidal carbides formation mechanism
下载PDF
Effect of nodule count and austempering heat treatment on segregation behavior of alloying elements in ductile cast iron 被引量:3
20
作者 E.Akbarzadeh Chiniforush N.Iranipour S.Yazdani 《China Foundry》 SCIE 2016年第3期217-222,共6页
The equilibrium partition ratio, k, has been measured for Mn, Mo, Si, Ni and Cu in a ductile iron with composition(wt.%): 3.45 C, 0.25 Mn, 0.25 Mo, 2.45 Si, 0.5Ni and 0.5Cu with different nodule counts obtained from d... The equilibrium partition ratio, k, has been measured for Mn, Mo, Si, Ni and Cu in a ductile iron with composition(wt.%): 3.45 C, 0.25 Mn, 0.25 Mo, 2.45 Si, 0.5Ni and 0.5Cu with different nodule counts obtained from different section sizes of13, 25, 75 mm in the as cast, austenitized(at 870 °C for times 1, 4 and 6 hours) and austempered(at 375 °C for times 1 to 1,440 min) samples. Results show that Mn and Mo segregate positively at cell boundaries, but Si, Ni and Cu concentrate in an inverse manner in the vicinity ofgraphite nodules and there is a depletion ofthese elements at cell boundaries. Segregation curves for Ni and Cu are more smooth than for Si. Carbide formation has been observed at cell boundaries. Based on the results, the partition ratios for all elements decrease with increasing the nodule count. More carbide with coarser morphology has been observed in the microstructure with a lower nodule count. Austenitization for a longer time can decrease partition ratio, but cannot eliminate it entirely. Increasing the austenitization temperature has the same effect. Austenitizing parameters have no significant effect on carbides volume fraction. The kinetics ofaustempering is faster in higher nodule counts and subsequently better mechanical properties including higher ductility, strength and toughness have been observed for all austempering conditions studied. 展开更多
关键词 SEGREGATION ductile iron AUSTENITIZATION AUSTEMPERING
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部