期刊文献+
共找到328,327篇文章
< 1 2 250 >
每页显示 20 50 100
Infrared and Visible Image Fusion Based on Res2Net-Transformer Automatic Encoding and Decoding 被引量:1
1
作者 Chunming Wu Wukai Liu Xin Ma 《Computers, Materials & Continua》 SCIE EI 2024年第4期1441-1461,共21页
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne... A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations. 展开更多
关键词 image fusion Res2Net-Transformer infrared image visible image
下载PDF
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:2
2
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft X-ray imager MAGNETOPAUSE image restoration
下载PDF
Dendritic Learning-Incorporated Vision Transformer for Image Recognition 被引量:1
3
作者 Zhiming Zhang Zhenyu Lei +2 位作者 Masaaki Omura Hideyuki Hasegawa Shangce Gao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期539-541,共3页
Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neu... Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neuroscience,we design a network that is more practical for engineering to classify visual features.Based on this,we propose a dendritic learning-incorporated vision Transformer(DVT),which out-performs other state-of-the-art methods on three image recognition benchmarks. 展开更多
关键词 image network image
下载PDF
The Soft X-ray Imager(SXI)on the SMILE Mission 被引量:4
4
作者 S.Sembay A.L.Alme +83 位作者 D.Agnolon T.Arnold A.Beardmore A.Belén Balado Margeli C.Bicknell C.Bouldin G.Branduardi-Raymont T.Crawford J.P.Breuer T.Buggey G.Butcher R.Canchal J.A.Carter A.Cheney Y.Collado-Vega H.Connor T.Crawford N.Eaton C.Feldman C.Forsyth T.Frantzen G.Galgóczi J.Garcia G.Y.Genov C.Gordillo H-P.Gröbelbauer M.Guedel Y.Guo M.Hailey D.Hall R.Hampson J.Hasiba O.Hetherington A.Holland S-Y.Hsieh M.W.J.Hubbard H.Jeszenszky M.Jones T.Kennedy K.Koch-Mehrin S.Kögl S.Krucker K.D.Kuntz C.Lakin G.Laky O.Lylund A.Martindale J.Miguel Mas Hesse R.Nakamura K.Oksavik N.Østgaard H.Ottacher R.Ottensamer C.Pagani S.Parsons P.Patel J.Pearson G.Peikert F.S.Porter T.Pouliantis B.H.Qureshi W.Raab G.Randal A.M.Read N.M.M.Roque M.E.Rostad C.Runciman S.Sachdev A.Samsonov M.Soman D.Sibeck S.Smit J.Søndergaard R.Speight S.Stavland M.Steller TianRan Sun J.Thornhill W.Thomas K.Ullaland B.Walsh D.Walton C.Wang S.Yang 《Earth and Planetary Physics》 EI CSCD 2024年第1期5-14,共10页
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese... The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States. 展开更多
关键词 Soft X-ray imaging micropore optics large area CCD
下载PDF
Background removal from global auroral images:Data-driven dayglow modeling 被引量:1
5
作者 A.Ohma M.Madelaire +4 位作者 K.M.Laundal J.P.Reistad S.M.Hatch S.Gasparini S.J.Walker 《Earth and Planetary Physics》 EI CSCD 2024年第1期247-257,共11页
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but... Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission. 展开更多
关键词 AURORA dayglow modeling global auroral images far ultraviolet images dayglow removal
下载PDF
SMILE soft X-ray Imager flight model CCD370 pre-flight device characterisation 被引量:1
6
作者 S.Parsons D.J.Hall +4 位作者 O.Hetherington T.W.Buggey T.Arnold M.W.J.Hubbard A.Holland 《Earth and Planetary Physics》 EI CSCD 2024年第1期25-38,共14页
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof... Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented. 展开更多
关键词 CCD soft X-ray imager characterisation SMILE
下载PDF
Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression 被引量:1
7
作者 DONG Wen-bo ZHOU Li +2 位作者 DING Shi-feng WANG Ai-ming CAI Jin-yan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期313-325,共13页
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ... Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second. 展开更多
关键词 ice channel ship navigation IDENTIFICATION image segmentation corner point regression
下载PDF
An Intelligent Sensor Data Preprocessing Method for OCT Fundus Image Watermarking Using an RCNN 被引量:1
8
作者 Jialun Lin Qiong Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1549-1561,共13页
Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images ha... Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking. 展开更多
关键词 Watermarks image segmentation rough convolutional neural network attentionmechanism feature discretization
下载PDF
Image super‐resolution via dynamic network 被引量:1
9
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
CAEFusion: A New Convolutional Autoencoder-Based Infrared and Visible Light Image Fusion Algorithm 被引量:1
10
作者 Chun-Ming Wu Mei-Ling Ren +1 位作者 Jin Lei Zi-Mu Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2857-2872,共16页
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed... To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks. 展开更多
关键词 image fusion deep learning auto-encoder(AE) INFRARED visible light
下载PDF
Estimation-free spatial-domain image reconstruction of structured illumination microscopy 被引量:1
11
作者 Xiaoyan Li Shijie Tu +4 位作者 Yile Sun Yubing Han Xiang Hao Cuifang kuang Xu Liu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期45-58,共14页
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona... Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise. 展开更多
关键词 Structured illumination microscopy image reconstruction spatial domain digital micromirror device(DMD)
下载PDF
Design and performance evaluation of a large field-of-view dual-particle time-encoded imager based on a depth-of-interaction detector
12
作者 Dong Zhao Xu-Wen Liang +6 位作者 Ping-Kun Cai Wei Cheng Wen-Bao Jia Da-Qian Hei Qing Shan Yong-Sheng Ling Chao Shi 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期1-14,共14页
Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and ne... Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°. 展开更多
关键词 Time-encoded imager Depth-of-interaction detector Dual-particle imaging Hotspot imaging
下载PDF
A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography
13
作者 Usman Khan Muhammad Khalid Khan +4 位作者 Muhammad Ayub Latif Muhammad Naveed Muhammad Mansoor Alam Salman A.Khan Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第3期2967-3000,共34页
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma... Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements. 展开更多
关键词 Machine learning deep learning unmanned aerial vehicles multi-spectral images image recognition object detection hyperspectral images aerial photography
下载PDF
Performance optimization of the neutron-sensitive image intensifier used in neutron imaging
14
作者 谭金昊 宋玉收 +14 位作者 周健荣 杨文钦 蒋兴奋 刘杰 张超月 周晓娟 夏远光 刘术林 闫保军 刘辉 王松林 赵豫斌 庄建 孙志嘉 陈元柏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期380-387,共8页
As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive ima... As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive image intensifier has been developed and demonstrated to achieve good spatial resolution and timing resolution.However,the influence of the working voltage on the performance of the neutron-sensitive imaging intensifier has not been studied.To optimize the performance of the neutron-sensitive image intensifier at different voltages,experiments have been performed at the China Spallation Neutron Source(CSNS)neutron beamline.The change in the light yield and imaging quality with different voltages has been acquired.It is shown that the image quality benefits from the high gain of the microchannel plate(MCP)and the high accelerating electric field between the MCP and the screen.Increasing the accelerating electric field is more effective than increasing the gain of MCPs for the improvement of the imaging quality.Increasing the total gain of the MCP stack can be realized more effectively by improving the gain of the standard MCP than that of the n MCP.These results offer a development direction for image intensifiers in the future. 展开更多
关键词 neutron detector neutron imaging microchannel plate image intensifier
下载PDF
Color Image Compression and Encryption Algorithm Based on 2D Compressed Sensing and Hyperchaotic System
15
作者 Zhiqing Dong Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 SCIE EI 2024年第2期1977-1993,共17页
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image... With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective. 展开更多
关键词 image encryption image compression hyperchaotic system compressed sensing
下载PDF
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image
16
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 Fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
下载PDF
Underwater image clarifying based on human visual colour constancy using double-opponency
17
作者 Bin Kong Jing Qian +2 位作者 Pinhao Song Jing Yang Amir Hussain 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期632-648,共17页
Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater ope... Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods. 展开更多
关键词 COMPUTERS computer vision image processing image reconstruction
下载PDF
Integer multiple quantum image scaling based on NEQR and bicubic interpolation
18
作者 蔡硕 周日贵 +1 位作者 罗佳 陈思哲 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期259-273,共15页
As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolatio... As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation. 展开更多
关键词 quantum image processing image scaling bicubic interpolation quantum circuit
下载PDF
Semantic segmentation-based semantic communication system for image transmission
19
作者 Jiale Wu Celimuge Wu +4 位作者 Yangfei Lin Tsutomu Yoshinaga Lei Zhong Xianfu Chen Yusheng Ji 《Digital Communications and Networks》 SCIE CSCD 2024年第3期519-527,共9页
With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image t... With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics. 展开更多
关键词 Semantic Communication Semantic segmentation image transmission image compression Deep learning
下载PDF
A Novel Multi-Stream Fusion Network for Underwater Image Enhancement
20
作者 Guijin Tang Lian Duan +1 位作者 Haitao Zhao Feng Liu 《China Communications》 SCIE CSCD 2024年第2期166-182,共17页
Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color... Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images. 展开更多
关键词 image enhancement multi-stream fusion underwater image
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部