Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pr...Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization.展开更多
Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to meas...Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains.展开更多
In the paper,the Matlab-Simulink model of simulation of operation of theŽS 413/417 series EMU(electric multiple unit)in traction and braking mode is exposed where changes are observed:stator currents of three-phase tr...In the paper,the Matlab-Simulink model of simulation of operation of theŽS 413/417 series EMU(electric multiple unit)in traction and braking mode is exposed where changes are observed:stator currents of three-phase traction motors,traction electric motor speeds and EMU,electromagnetic torque on the rotor shaft of the traction electric motor and DC(direct current)bus voltage.The model allowed review of the listed parameters for:different allowed values of contact network voltage and total voltage distortion at the place of connection of the EMU to the contact network,different mechanical loads of EMU and traction electric motor and different train speeds and rotation of traction electric motors.Appropriate conclusions were made through the analysis of the simulation results obtained.展开更多
Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist ...Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist high-speed impact. It is concluded that different microstructures of Al-Sc and Al-Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their greatly different capabilities of resisting impact. Furthermore, the effect of the size range ofnanoscale A13Sc precipitate in A1-Sc alloy on the resistance of high-speed impact was investigated. In addition, computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melt and solidification occurred at the crater wall, especially for hypervelocity impact (〉5 km/s).展开更多
The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the dera...The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.展开更多
Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard,...Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components.Three different angles for the baffles are-17°, 0° and 17°.Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckledownstream and knuckle-upstream operating conditions,respectively, which are almost equal and both meet the requirements of the standard EN50367:2012.展开更多
In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line...In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.展开更多
The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of ...The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.展开更多
A modified temperature-phase transformation field coupled nonlinear mathematical model was made and used in computer simulation on the controlled cooling of 82B high-speed rods. The surface temperature history and vol...A modified temperature-phase transformation field coupled nonlinear mathematical model was made and used in computer simulation on the controlled cooling of 82B high-speed rods. The surface temperature history and volume fraction of pearlite as well as the phase transformation history were simulated by using the finite element software Marc/Mentat. The simulated results were compared with the actual measurement and the agreement is good which can validate the presented computational models.展开更多
Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with ...Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method.The variations of degrees of freedom(DOFs:horizontal movement,roll angle,and yaw angle),the lateral wheel-rail force,the derailment coefficient and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specifie speeds.Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed,but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment.The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened.The pressure pulse has significan effects on the train DOFs,and the evaluations of these safety indexes are strongly suggested in practice.The pressure pulse has a limited effect on the derailment coefficien and the lateral wheel-rail force,and,thus,their further evaluations may be not necessary.展开更多
This paper develops a strong secondary development based on ADAMS feature which creates high-speed rail bearings for simulation analysis module. This thesis is in the case of non-circular pattern instructions of how t...This paper develops a strong secondary development based on ADAMS feature which creates high-speed rail bearings for simulation analysis module. This thesis is in the case of non-circular pattern instructions of how to achieve rapid roller modeling, with analysis of functions and parameters required for the design of the simulation module of the high-speed rail bearing, as well as the design of dialog boxes, the environment and file structure. The specific modules is based on the secondary development language provided by ADAMS ! View. Through the menus, dialog boxes which input parameters, it can achieve high iron bearing automatic modeling, dynamic analysis and post-processing to simplify the analysis of high-speed rail bearing operations, as well as improving the high-speed rail bearing development efficiency.展开更多
Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics o...Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and reseheduling trains on the rail network.展开更多
Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well wit...Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well with the results obtained by the analytical model from literatures. The velocity of the projectile decays rapidly during the penetration,which is about 90% losing in 80D penetration depth. Pressure distributions are also discussed and the results show that the largest pressure appears on the tip of the cone and the lowest pressure occurs inside the cavity and causes vapor generation. For inside the cavity,there is always a supplement of air from outside before the splash closed,after that,the cavity is mainly filled with vapor.展开更多
A simulation study on occupant evacuation in high-speed railway stations (HSRSs) was presented in China. Pathfinder was employed as the simulation platform and a typical HSRS in a medinm-sized city in China was sele...A simulation study on occupant evacuation in high-speed railway stations (HSRSs) was presented in China. Pathfinder was employed as the simulation platform and a typical HSRS in a medinm-sized city in China was selected for model development. The model was carefully calibrated and validated by comparing simulation results with field data. Evacuation efficiency could be improved with the increased door width while such effect decreased when the door width reached a marginal value. And the marginal value varied under different occupant densities. An exponential function between evacuation lime and occupant density was fitted, indicating that occupant density significantly affected evacuation efficiency. A set of different evacuation strategies were compared, in terms of their evacuation performances. It was found that a balanced door usage would result in more efficient evacuations in HSRSs. Thus occupant flows were suggested to be managed considering door capacity. To avoid potential safety issues caused by such strategy ( e. g. , more occupants could be evacuated from a smaller area designed with higher door capacity ), occupants needed to enhance their awareness of following evacuation guidance instead of panic escape in emergencies. Moreover, such safety issues could also be avoided during the design phase that the evacuation capacity was designed to be proportional to the room capacity for each floor. The results of this study provide valuable information for HSRS design and flow management in China.展开更多
In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recor...In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored.展开更多
To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response charact...To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings.展开更多
The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical ...The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.展开更多
The device is used for the test on the fuze detonating time according to the initial velocity of the projectile and the altitude and speed of enemy aircraft flight. For the special requirements of the high-speed signa...The device is used for the test on the fuze detonating time according to the initial velocity of the projectile and the altitude and speed of enemy aircraft flight. For the special requirements of the high-speed signal acquisition in the process, the characteristics of the measured signal are analyzed. The system is investigated in chip selection, signal transmission, signal processing, signal storage, post-production PCB design, etc. The appropriate measures and solutions which affect the integrity and accuracy of the signal in each process are proposed. The rules for the layout of the device and wiring are made. The result show that the measurement values are accurate without loss of data.展开更多
The development of analysis on train-induced ground vibration is briefly summarized. A train-track- ground integrated dynamic model is introduced in the paper to predict the ground vibration induced by high-speed trai...The development of analysis on train-induced ground vibration is briefly summarized. A train-track- ground integrated dynamic model is introduced in the paper to predict the ground vibration induced by high-speed trains. Representative dynamic responses of the train-track-ground system predicted by the model are presented. Some major results measured from two field tests on the ground vibration induced by two high-speed trains are reported. Numerical prediction with the proposed train-track-ground model is validated by the high-speed train running experiments. Research results show that the wheel/rail dynamic interaction caused by track irregularities has a significant influence on the ground acceleration and little influence on the ground displacement. The main frequencies of the ground vibration induced by high-speed trains are usually below 80 Hz. Compared with the ballasted track, the ballastless track structure can produce much larger train-induced ground vibration at frequencies above 40 Hz. The vertical ground vibration is much larger than the lateral and longitudinal components.展开更多
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ...Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.展开更多
基金supported by the National Natural Science Foundation of China(Project Nos.12272270,11972261).
文摘Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization.
基金the Sichuan Science and Technology Program of China(No.2024NSFSC0160).
文摘Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains.
文摘In the paper,the Matlab-Simulink model of simulation of operation of theŽS 413/417 series EMU(electric multiple unit)in traction and braking mode is exposed where changes are observed:stator currents of three-phase traction motors,traction electric motor speeds and EMU,electromagnetic torque on the rotor shaft of the traction electric motor and DC(direct current)bus voltage.The model allowed review of the listed parameters for:different allowed values of contact network voltage and total voltage distortion at the place of connection of the EMU to the contact network,different mechanical loads of EMU and traction electric motor and different train speeds and rotation of traction electric motors.Appropriate conclusions were made through the analysis of the simulation results obtained.
文摘Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist high-speed impact. It is concluded that different microstructures of Al-Sc and Al-Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their greatly different capabilities of resisting impact. Furthermore, the effect of the size range ofnanoscale A13Sc precipitate in A1-Sc alloy on the resistance of high-speed impact was investigated. In addition, computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melt and solidification occurred at the crater wall, especially for hypervelocity impact (〉5 km/s).
基金supported by the National Basic Research Program(973)of China(2011CB711103)the National Natural Science Foundation of China(U1134202)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT1178 and SWJTU12ZT01)the 2013 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University
文摘The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.
基金supported by National Key Research and Development Program of China (No. 2020YFA0710902)National Natural Science Foundation of China (No. 52072319)+1 种基金National Natural Science Foundation of China (Nos. 52072319 and 12172308)State Key Laboratory of Traction Power (2019TPL_T02)。
文摘Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components.Three different angles for the baffles are-17°, 0° and 17°.Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckledownstream and knuckle-upstream operating conditions,respectively, which are almost equal and both meet the requirements of the standard EN50367:2012.
基金supported by the National Basic Research Program of China (Grant No. 2012CB725400)the National Natural Science Foundation of China (Grant No. 71131001-1)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,China (Grant Nos. RCS2012ZZ001 and RCS2012ZT001)
文摘In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.
基金Project(2008A09030004) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject(30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.
基金the National Doctorate Fund by the Ministry of Education of China(No.20020008011)
文摘A modified temperature-phase transformation field coupled nonlinear mathematical model was made and used in computer simulation on the controlled cooling of 82B high-speed rods. The surface temperature history and volume fraction of pearlite as well as the phase transformation history were simulated by using the finite element software Marc/Mentat. The simulated results were compared with the actual measurement and the agreement is good which can validate the presented computational models.
基金the National Basic Research Program of China (973 program,Grant 2011CB711100)the National Natural Science Foundation of China (Project No.11372307)the Chinese Academy of Sciences (Grant KJCX2-EW-L03)
文摘Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method.The variations of degrees of freedom(DOFs:horizontal movement,roll angle,and yaw angle),the lateral wheel-rail force,the derailment coefficient and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specifie speeds.Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed,but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment.The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened.The pressure pulse has significan effects on the train DOFs,and the evaluations of these safety indexes are strongly suggested in practice.The pressure pulse has a limited effect on the derailment coefficien and the lateral wheel-rail force,and,thus,their further evaluations may be not necessary.
基金Supported by Special Topic of the Ministry of Education about Humanities and Social Sciences of China(No.12JDGC007)+2 种基金National Science and Technology Support Project of China(No.2011BAF09B01)International Scientific and Technological Cooperation Projects of China(No.2013DFB70350)
文摘This paper develops a strong secondary development based on ADAMS feature which creates high-speed rail bearings for simulation analysis module. This thesis is in the case of non-circular pattern instructions of how to achieve rapid roller modeling, with analysis of functions and parameters required for the design of the simulation module of the high-speed rail bearing, as well as the design of dialog boxes, the environment and file structure. The specific modules is based on the secondary development language provided by ADAMS ! View. Through the menus, dialog boxes which input parameters, it can achieve high iron bearing automatic modeling, dynamic analysis and post-processing to simplify the analysis of high-speed rail bearing operations, as well as improving the high-speed rail bearing development efficiency.
基金Supported by the National Natural Science Foundation of China under Grant No. 70901006Research Foundation of Beijing Jiaotong University under Grant Nos. 2011JBM158, 2011JBM162Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant Nos. RCS2009ZT001, RCS2010ZZ001
文摘Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and reseheduling trains on the rail network.
基金Sponsored by the Special Fund Project for Technology Innovation Talent of Harbin(Grant No.2013RFLXJ007)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201159)
文摘Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well with the results obtained by the analytical model from literatures. The velocity of the projectile decays rapidly during the penetration,which is about 90% losing in 80D penetration depth. Pressure distributions are also discussed and the results show that the largest pressure appears on the tip of the cone and the lowest pressure occurs inside the cavity and causes vapor generation. For inside the cavity,there is always a supplement of air from outside before the splash closed,after that,the cavity is mainly filled with vapor.
基金Study of Emergency Management Technology of Integrated Passenger Transportation Hub in Jiangsu Province,China(No.2012R06)National Natural Science Foundation of China(No.51608114)Shanghai Pujiang Program,China(No.15PJC093)
文摘A simulation study on occupant evacuation in high-speed railway stations (HSRSs) was presented in China. Pathfinder was employed as the simulation platform and a typical HSRS in a medinm-sized city in China was selected for model development. The model was carefully calibrated and validated by comparing simulation results with field data. Evacuation efficiency could be improved with the increased door width while such effect decreased when the door width reached a marginal value. And the marginal value varied under different occupant densities. An exponential function between evacuation lime and occupant density was fitted, indicating that occupant density significantly affected evacuation efficiency. A set of different evacuation strategies were compared, in terms of their evacuation performances. It was found that a balanced door usage would result in more efficient evacuations in HSRSs. Thus occupant flows were suggested to be managed considering door capacity. To avoid potential safety issues caused by such strategy ( e. g. , more occupants could be evacuated from a smaller area designed with higher door capacity ), occupants needed to enhance their awareness of following evacuation guidance instead of panic escape in emergencies. Moreover, such safety issues could also be avoided during the design phase that the evacuation capacity was designed to be proportional to the room capacity for each floor. The results of this study provide valuable information for HSRS design and flow management in China.
文摘In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored.
基金Project supported by the National Natural Science Foundation of China(Nos.12393780,1203201712002221)+3 种基金the Key Scientific Research Projects of China Railway Group(No.N2021J032)the College Education Scientific Research Project in Hebei Province of China(No.JZX2024006)the S&T Program in Hebei of China(No.21567622H)the Research Project of Hebei Province Science and Technology(No.QN2023071)。
文摘To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings.
文摘The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.
文摘The device is used for the test on the fuze detonating time according to the initial velocity of the projectile and the altitude and speed of enemy aircraft flight. For the special requirements of the high-speed signal acquisition in the process, the characteristics of the measured signal are analyzed. The system is investigated in chip selection, signal transmission, signal processing, signal storage, post-production PCB design, etc. The appropriate measures and solutions which affect the integrity and accuracy of the signal in each process are proposed. The rules for the layout of the device and wiring are made. The result show that the measurement values are accurate without loss of data.
基金National Natural Science Foundation of China Under Grant No. 50838006 and No. 50823004the Traction Power State Key Laboratory of Southwest Jiaotong University Under Grant No. 2008TPL-Z05the Science and Technology Department of Sichuan Province
文摘The development of analysis on train-induced ground vibration is briefly summarized. A train-track- ground integrated dynamic model is introduced in the paper to predict the ground vibration induced by high-speed trains. Representative dynamic responses of the train-track-ground system predicted by the model are presented. Some major results measured from two field tests on the ground vibration induced by two high-speed trains are reported. Numerical prediction with the proposed train-track-ground model is validated by the high-speed train running experiments. Research results show that the wheel/rail dynamic interaction caused by track irregularities has a significant influence on the ground acceleration and little influence on the ground displacement. The main frequencies of the ground vibration induced by high-speed trains are usually below 80 Hz. Compared with the ballasted track, the ballastless track structure can produce much larger train-induced ground vibration at frequencies above 40 Hz. The vertical ground vibration is much larger than the lateral and longitudinal components.
基金the National Natural Science Foundation of China(Grant Nos. 51278423 and 51478395)for its financial support
文摘Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.