The accurate measurement of the fill level in the ball mill has not been resolved because of the interplay of many variable factors, which led the mill to be operated under the uneconomical condition and lost a lot of...The accurate measurement of the fill level in the ball mill has not been resolved because of the interplay of many variable factors, which led the mill to be operated under the uneconomical condition and lost a lot of energy. At present, some methods, such as vibration method and acoustic method, have been applied for measuring the fill level by the researchers. Aiming at the problem of the traditional methods for measuring the fill level, that is, the feature variables of the fill level suffer the influences of the ball load and the water content of the coal, a novel method to measure the fill level is proposed and a possible relation between the fill level and the angular position of the maximum vibration point on the mill shell is investigated. The angular positions of the maximum vibration point on the mill shell for different fill level cases are calculated theoretically under two assumptions, respectively. Meanwhile the charge motions of the mill for different fill level cases are simulated with the discrete element method (DEM). And the simulation results are verified by comparing the motion trajectories of steel balls and power draft of the mill. The simulated movement trajectories of the outmost layer steel balls in the mill are monitored and analyzed to obtain the angular positions of the maximum vibration point on the mill shell. Both the results of the theoretical calculation and the 3D DEM simulation show that the position of the maximum vibration point on the mill shell moves to a lower angular positions as the fill level decreasing, which provides a new idea for measuring the filllevel accurately.展开更多
In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete elem...In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete element method (DEM) provide correlation between the milling parameters. A mathematical model is used to improve and develop this process. The results show that the loss of powder mass can remarkably improve the performance of milling. The balls made of stainless-steel have a positive effect on the milling efficiency. The simulation shows that the high ball milling velocities can contribute to faster particle size reduction.展开更多
Discrete Element Method (DEM) is a powerful tool for simulating different types of mills. It also used for computing different types of particles such as rocks, grains, and molecules.</span></span><span...Discrete Element Method (DEM) is a powerful tool for simulating different types of mills. It also used for computing different types of particles such as rocks, grains, and molecules.</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM has been widely used in the field of rock mechanics. In the present work,</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM approach is applied to model the milling media (powder particles and balls) inside a planetary ball mill and to estimate the distribution of particles of a dry powder during milling. In fact, the efficiency of the DEM strongly depends on the input parameters. The DEM simulation results indicated that</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM is a promising tool for the simulation of the dynamic particles motion and interactions within planetary ball mill. These results could be utilized to further develop the synthesis performance, anticipate the reaction, and reduce the wear in the dry milling reactions.展开更多
Planetary ball mill is a powerful tool, which has been used for milling various materials for size reduction. The discrete element method (DEM) was used to simulate the dynamics of particle processes in a planeta...Planetary ball mill is a powerful tool, which has been used for milling various materials for size reduction. The discrete element method (DEM) was used to simulate the dynamics of particle processes in a planetary ball mill. This work includes the calibration of DEM parameters to simulate a planetary ball mill using EDEM Altair 2021.2 software, which provides both faster workflows and results. The iterative input parameters changed to a close correlation between the simulation and experimental results are attained. The results showed that the standard tests could be used to generate various experimental reference values for the calibration. The numerical modeling results agree with theexperimental, indicating that the calibrated parameters are accurate.展开更多
Gd^3+/TiO2 and Gd2O3/TiO2 nanoparticles were prepared by ball milling method.The effects of Gd^3+ion and Gd2O3 on the structure and optical property of TiO2 were studied by XRD and UV-vis DRS.Specific surface area was...Gd^3+/TiO2 and Gd2O3/TiO2 nanoparticles were prepared by ball milling method.The effects of Gd^3+ion and Gd2O3 on the structure and optical property of TiO2 were studied by XRD and UV-vis DRS.Specific surface area was determined by Brunauer-Emmett-Teller(BET)method.The morphology and elemental composition were characterized by SEM-EDS.XPS was used to determine the surface compositions and chemical character of elements.The sample sizes and microstructures were observed by TEM.The photocatalytic activities of TiO2 nanoparticles modified with rare earth metal gadolinium(Gd^3+ion or Gd2O3)were evaluated by degradation of methylene blue(MB)under UV light.Experimental results indicate that 2,5 mol%Gd^3+/TiO2 shows the best photocatalytic activity compared with Gd2O3/TiO2 and pure TiO2.The existence of gadolinium can exhibit the aggregation and induce lattice distortion of TiO2 obtained from XRD,SEM and TEM results.The band gap energy of 2.5 mol%Gd^3+/TiO2 decreases to3.07 eV and it leads to visible light absorption response which can be seen from UV-vis absorption spectra.The surface area of 2.5 mol%Gd^3+/TiO2 equals to 85.8 m^2/g and average crystal size is 21.1 nm.EDS and XPS analyses reveal that gadolinium can be introduced either into TiO2 lattice or adsorbed on the surface of TiO2.The content of surface OH groups in 2.5 mol%Gd^3+/TiO2 is 50,88%(1.55 times higher than that of pure TiO2)and the content of lattice oxygen decreases to 11.26%.The MB(25 mg/L)degradation reaction rate constants of 2,5 mol%Gd^3+/TiO2,0.5 mol%Gd2O3/TiO2 and pure TiO2 were0.0713,0.0588 and 0.0263 min^-1,respectively.The degradation rates of rhodamine B(30 mg/L)in 60 min are 97,9%,90.1%and 84.6%for 2,5 mol%Gd^3+/TiO2,0.5 mol%Gd2O3/TiO2 and pure TiO2,respectively.展开更多
Ball milling method was applied to prepare Lu^3+/TiO2 photocatalysts. The catalysts were characterized with X-ray powder diffraction(XRD), X-ray photoelectron spectroscopy(XPS), UV-visible diffuse reflectance spe...Ball milling method was applied to prepare Lu^3+/TiO2 photocatalysts. The catalysts were characterized with X-ray powder diffraction(XRD), X-ray photoelectron spectroscopy(XPS), UV-visible diffuse reflectance spectra(UV-vis DRS), energy dispersive X-ray spectrometer(EDS), transmission electron microscopy(TEM) and Brunauer-Emmett-Teller(BET) method. The photocatalytic activities were determined by the degradation of methylene blue(MB) equipped with a 300 W medium pressure mercury lamp. Results show that the first order reaction rate constants of Lu^3+/TiO2 and pure TiO2 are0.0565 and 0.0263 min-1, respectively, which both were evaluated under the condition of catalysts loading of 0.2 g/L,initial concentration of 25 mg/L for MB, mole ratio of Lu^3+/TiO2 of 1.5% and milling time of 4 h. The average crystal sizes of 1.5 mol% Lu^3+/TiO2 and pure TiO2 are 18.7 and 19.3 nm, respectively.展开更多
Ball milling is widely used in industry to mill particulate material.The primary purpose of this process is to attain an appropriate product size with the least possible energy consumption.The process is also extensiv...Ball milling is widely used in industry to mill particulate material.The primary purpose of this process is to attain an appropriate product size with the least possible energy consumption.The process is also extensively utilised in pharmaceuticals for the comminution of the excipients or drugs.Surprisingly,for ball mill,little is known concerning the mechanism of size reduction.Traditional prediction approaches are not deemed useful to provide significant insights into the operation or facilitate radical step changes in performance.Therefore,the discrete element method(DEM)as a computational modelling approach has been used in this paper.In previous research,DEM has been applied to simulate breaking behaviour through the impact energy of all ball collisions as the driving force for fracturing.However,the nature of pharmaceutical material fragmentation during ball milling is more complex.Suitable functional equations which link broken media and applied energy do not consider the collision of particulate media of different shapes or collisions of particulate media(such as granules)with balls and rotating mill drum.This could have a significant impact on fragmentation.Therefore,this paper aimed to investigate the fragmentation of bounded particles into DEM granules of different shape/size during the ball milling process.A systematic study was undertaken to explore the effect of milling speed on breakage behaviour.Also,in this study,a combination of a density-based clustering method and discrete element method was employed to numerically investigate the number and size of the fragments generated during the ball milling process over time.It was discovered that the collisions of the ball increased proportionally with rotation speed until reaching the critical rotation speed.Consequently,results illustrate that with an increase of rotation speed,the mill power increased correspondingly.The caratacting motion of mill material together with balls was identified as the most effective regime regarding the fragmentation,and fewer breakage events occurred for centrifugal motion.Higher quantities of the fines in each batch were produced with increased milling speed with less quantities of grain fragments.Moreover,the relationship between the number of produced fragment and milling speed at the end of the process exhibited a linear tendency.展开更多
This study aimed to prepare and characterize itraconazole (ITCZ)- or miconazole (MCZ)-loaded poly (lactide-co-glycolide) (PLGA) microparticles (MP) using a co-grinding method with ball milling, which is a solvent-free...This study aimed to prepare and characterize itraconazole (ITCZ)- or miconazole (MCZ)-loaded poly (lactide-co-glycolide) (PLGA) microparticles (MP) using a co-grinding method with ball milling, which is a solvent-free and convenient procedure. PLGA MP was prepared by grinding for 60 min, and the fixed theoretical drug loading was set at 9.1% and 16.7% for both drugs. The obtained loading efficiency for both drugs was estimated to be approximately 100%. The average diameters of the drug-loaded PLGA MP were approximately 20 - 35 μm. Powder X-ray diffraction (PXRD) or differential scanning calorimetry (DSC) confirmed amorphization of ITCZ and MCZ in ITCZ- or MCZ-loaded PLGA MP in all formulations. The drug release percentage from 9.1%-loaded ITCZ-PLGA7505 MP at 24 h was almost 50%, which was higher than that of ITCZ powder. The drug release percentage from MCZ-loaded PLGA7505 MP at 4 h was over 80%, which was higher than that of MCZ powder. This enhancement of release rate is caused by the amorphization of ITCZ or MCZ in the PLGA matrix. MCZ-loaded PLGA7510 MP showed a sustained release profile up to 24 h, suggesting that MCZ exists in an amorphous form in the PLGA matrix;however, the release rate declined owing to the large molecular weight of PLGA. Therefore, the release enhancement of antifungal drugs loaded on PLGA MP could be achieved by their amorphization using a co-grinding method with ball milling.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50775035)New Doctor Teacher Foundation of Southeast University of China (Grant No. 9202000024)
文摘The accurate measurement of the fill level in the ball mill has not been resolved because of the interplay of many variable factors, which led the mill to be operated under the uneconomical condition and lost a lot of energy. At present, some methods, such as vibration method and acoustic method, have been applied for measuring the fill level by the researchers. Aiming at the problem of the traditional methods for measuring the fill level, that is, the feature variables of the fill level suffer the influences of the ball load and the water content of the coal, a novel method to measure the fill level is proposed and a possible relation between the fill level and the angular position of the maximum vibration point on the mill shell is investigated. The angular positions of the maximum vibration point on the mill shell for different fill level cases are calculated theoretically under two assumptions, respectively. Meanwhile the charge motions of the mill for different fill level cases are simulated with the discrete element method (DEM). And the simulation results are verified by comparing the motion trajectories of steel balls and power draft of the mill. The simulated movement trajectories of the outmost layer steel balls in the mill are monitored and analyzed to obtain the angular positions of the maximum vibration point on the mill shell. Both the results of the theoretical calculation and the 3D DEM simulation show that the position of the maximum vibration point on the mill shell moves to a lower angular positions as the fill level decreasing, which provides a new idea for measuring the filllevel accurately.
文摘In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete element method (DEM) provide correlation between the milling parameters. A mathematical model is used to improve and develop this process. The results show that the loss of powder mass can remarkably improve the performance of milling. The balls made of stainless-steel have a positive effect on the milling efficiency. The simulation shows that the high ball milling velocities can contribute to faster particle size reduction.
文摘Discrete Element Method (DEM) is a powerful tool for simulating different types of mills. It also used for computing different types of particles such as rocks, grains, and molecules.</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM has been widely used in the field of rock mechanics. In the present work,</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM approach is applied to model the milling media (powder particles and balls) inside a planetary ball mill and to estimate the distribution of particles of a dry powder during milling. In fact, the efficiency of the DEM strongly depends on the input parameters. The DEM simulation results indicated that</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM is a promising tool for the simulation of the dynamic particles motion and interactions within planetary ball mill. These results could be utilized to further develop the synthesis performance, anticipate the reaction, and reduce the wear in the dry milling reactions.
文摘Planetary ball mill is a powerful tool, which has been used for milling various materials for size reduction. The discrete element method (DEM) was used to simulate the dynamics of particle processes in a planetary ball mill. This work includes the calibration of DEM parameters to simulate a planetary ball mill using EDEM Altair 2021.2 software, which provides both faster workflows and results. The iterative input parameters changed to a close correlation between the simulation and experimental results are attained. The results showed that the standard tests could be used to generate various experimental reference values for the calibration. The numerical modeling results agree with theexperimental, indicating that the calibrated parameters are accurate.
基金Project supported by Natural Science Foundation of Hainan Province(20156242,20152033,217100,217101,ZDYF2017011)the Program of State Key Laboratory of Pollution Control and Resource Reuse(PCRRF17026)
文摘Gd^3+/TiO2 and Gd2O3/TiO2 nanoparticles were prepared by ball milling method.The effects of Gd^3+ion and Gd2O3 on the structure and optical property of TiO2 were studied by XRD and UV-vis DRS.Specific surface area was determined by Brunauer-Emmett-Teller(BET)method.The morphology and elemental composition were characterized by SEM-EDS.XPS was used to determine the surface compositions and chemical character of elements.The sample sizes and microstructures were observed by TEM.The photocatalytic activities of TiO2 nanoparticles modified with rare earth metal gadolinium(Gd^3+ion or Gd2O3)were evaluated by degradation of methylene blue(MB)under UV light.Experimental results indicate that 2,5 mol%Gd^3+/TiO2 shows the best photocatalytic activity compared with Gd2O3/TiO2 and pure TiO2.The existence of gadolinium can exhibit the aggregation and induce lattice distortion of TiO2 obtained from XRD,SEM and TEM results.The band gap energy of 2.5 mol%Gd^3+/TiO2 decreases to3.07 eV and it leads to visible light absorption response which can be seen from UV-vis absorption spectra.The surface area of 2.5 mol%Gd^3+/TiO2 equals to 85.8 m^2/g and average crystal size is 21.1 nm.EDS and XPS analyses reveal that gadolinium can be introduced either into TiO2 lattice or adsorbed on the surface of TiO2.The content of surface OH groups in 2.5 mol%Gd^3+/TiO2 is 50,88%(1.55 times higher than that of pure TiO2)and the content of lattice oxygen decreases to 11.26%.The MB(25 mg/L)degradation reaction rate constants of 2,5 mol%Gd^3+/TiO2,0.5 mol%Gd2O3/TiO2 and pure TiO2 were0.0713,0.0588 and 0.0263 min^-1,respectively.The degradation rates of rhodamine B(30 mg/L)in 60 min are 97,9%,90.1%and 84.6%for 2,5 mol%Gd^3+/TiO2,0.5 mol%Gd2O3/TiO2 and pure TiO2,respectively.
基金Project supported by the Natural Science Foundation of Hainan Province(20156242,217100,217101,20152033)Science and Technology Department of Hainan Province(ZDYF2017011)
文摘Ball milling method was applied to prepare Lu^3+/TiO2 photocatalysts. The catalysts were characterized with X-ray powder diffraction(XRD), X-ray photoelectron spectroscopy(XPS), UV-visible diffuse reflectance spectra(UV-vis DRS), energy dispersive X-ray spectrometer(EDS), transmission electron microscopy(TEM) and Brunauer-Emmett-Teller(BET) method. The photocatalytic activities were determined by the degradation of methylene blue(MB) equipped with a 300 W medium pressure mercury lamp. Results show that the first order reaction rate constants of Lu^3+/TiO2 and pure TiO2 are0.0565 and 0.0263 min-1, respectively, which both were evaluated under the condition of catalysts loading of 0.2 g/L,initial concentration of 25 mg/L for MB, mole ratio of Lu^3+/TiO2 of 1.5% and milling time of 4 h. The average crystal sizes of 1.5 mol% Lu^3+/TiO2 and pure TiO2 are 18.7 and 19.3 nm, respectively.
基金supported by the Career-FIT Fellowshipsfunded through European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.713654supported by ACCORD(ITMS project code:313021X329),funded through the European Regional Development Fund.
文摘Ball milling is widely used in industry to mill particulate material.The primary purpose of this process is to attain an appropriate product size with the least possible energy consumption.The process is also extensively utilised in pharmaceuticals for the comminution of the excipients or drugs.Surprisingly,for ball mill,little is known concerning the mechanism of size reduction.Traditional prediction approaches are not deemed useful to provide significant insights into the operation or facilitate radical step changes in performance.Therefore,the discrete element method(DEM)as a computational modelling approach has been used in this paper.In previous research,DEM has been applied to simulate breaking behaviour through the impact energy of all ball collisions as the driving force for fracturing.However,the nature of pharmaceutical material fragmentation during ball milling is more complex.Suitable functional equations which link broken media and applied energy do not consider the collision of particulate media of different shapes or collisions of particulate media(such as granules)with balls and rotating mill drum.This could have a significant impact on fragmentation.Therefore,this paper aimed to investigate the fragmentation of bounded particles into DEM granules of different shape/size during the ball milling process.A systematic study was undertaken to explore the effect of milling speed on breakage behaviour.Also,in this study,a combination of a density-based clustering method and discrete element method was employed to numerically investigate the number and size of the fragments generated during the ball milling process over time.It was discovered that the collisions of the ball increased proportionally with rotation speed until reaching the critical rotation speed.Consequently,results illustrate that with an increase of rotation speed,the mill power increased correspondingly.The caratacting motion of mill material together with balls was identified as the most effective regime regarding the fragmentation,and fewer breakage events occurred for centrifugal motion.Higher quantities of the fines in each batch were produced with increased milling speed with less quantities of grain fragments.Moreover,the relationship between the number of produced fragment and milling speed at the end of the process exhibited a linear tendency.
文摘This study aimed to prepare and characterize itraconazole (ITCZ)- or miconazole (MCZ)-loaded poly (lactide-co-glycolide) (PLGA) microparticles (MP) using a co-grinding method with ball milling, which is a solvent-free and convenient procedure. PLGA MP was prepared by grinding for 60 min, and the fixed theoretical drug loading was set at 9.1% and 16.7% for both drugs. The obtained loading efficiency for both drugs was estimated to be approximately 100%. The average diameters of the drug-loaded PLGA MP were approximately 20 - 35 μm. Powder X-ray diffraction (PXRD) or differential scanning calorimetry (DSC) confirmed amorphization of ITCZ and MCZ in ITCZ- or MCZ-loaded PLGA MP in all formulations. The drug release percentage from 9.1%-loaded ITCZ-PLGA7505 MP at 24 h was almost 50%, which was higher than that of ITCZ powder. The drug release percentage from MCZ-loaded PLGA7505 MP at 4 h was over 80%, which was higher than that of MCZ powder. This enhancement of release rate is caused by the amorphization of ITCZ or MCZ in the PLGA matrix. MCZ-loaded PLGA7510 MP showed a sustained release profile up to 24 h, suggesting that MCZ exists in an amorphous form in the PLGA matrix;however, the release rate declined owing to the large molecular weight of PLGA. Therefore, the release enhancement of antifungal drugs loaded on PLGA MP could be achieved by their amorphization using a co-grinding method with ball milling.