Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary...Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary to guarantee the quality of cable-driven systems during the assembly process. However, the stress relaxation of cables becomes a critical concern during long-term operation. This study investigates the effects of non-uniform deformation and long-term stress relaxation of the driven cables owing to moving parts in the system. A simple closed-loop cable-driven system is built and an alternating load is applied to it to replicate the operation of transmission cables. Under different experimental conditions, the cable tension is recorded and the boundary data are selected to be curve-fitted. Based on the fitted results, a formula is presented to estimate the stress relaxation of cables to evaluate the assembly performance. Further experimental results show that the stress relaxation is mainly caused by cable creep and the assembly procedure. To remove the influence of the assembly procedure, a modified pre-stretching assembly method based on the stress relaxation theory is proposed and verification experiments are performed. Finally, the assembly performance is optimized using a cable-driven surgical robot as an example. This paper proposes a dual stretching method instead of the pre-stretching method to assemble the cable-driven system to improve its performance and prolong its service life.展开更多
Background Assembly guided by paper documents is the most widespread type used in the process of aircraft cable assembly.This process is very complicated and requires assembly workers with high-level skills.The techno...Background Assembly guided by paper documents is the most widespread type used in the process of aircraft cable assembly.This process is very complicated and requires assembly workers with high-level skills.The technologies of wearable Augmented Reality(AR)and portable visual inspection can be exploited to improve the efficiency and the quality of cable assembly.Methods In this study,we propose a smart assistance system for cable assembly that combines wearable AR with portable visual inspection.Specifically,a portable visual device based on binocular vision and deep learning is developed to realize fast detection and recognition of cable brackets that are installed on aircraft airframes.A Convolutional Neural Network(CNN)is then developed to read the texts on cables after images are acquired from the camera of the wearable AR device.An authoring tool that was developed to create and manage the assembly process is proposed to realize visual guidance of the cable assembly process based on a wearable AR device.The system is applied to cable assembly on an aircraft bulkhead prototype.Results The results show that this system can recognize the number,types,and locations of brackets,and can correctly read the text of aircraft cables.The authoring tool can assist users who lack professional programming experience in establishing a process plan,i.e.,assembly outline based on AR for cable assembly.Conclusions The system can provide quick assembly guidance for aircraft cable with texts,images,and a 3 D model.It is beneficial for reducing the dependency on paper documents,labor intensity,and the error rate.展开更多
The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly ...The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.展开更多
Based on the analysis of characteristic of cable harness planning in virtual environment,a discrete control node modeling (DCNM) method of cable harness in virtual environment and the cable harness assembly routing te...Based on the analysis of characteristic of cable harness planning in virtual environment,a discrete control node modeling (DCNM) method of cable harness in virtual environment and the cable harness assembly routing technique based on it are proposed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points,and the design can realize cable harness planning through controlling those control nodes. This method of cable harness routing in the virtual environment breaks the status that virtual assembly process planning is just suitable for the rigid components at present,and impulse the virtual assembly process planning to be more practical. Relation algorithms have been verified in a self-developed system named virtual cable harness assembly planning (VCHAP) system,and this VCHAP system has been applied in assembly process planning of aerospace-related products.展开更多
Assembly process planning(APP) for complicated products is a time-consuming and difficult work with conventional method. Virtual assembly process planning(VAPP) provides engineers a new and efficiency way. Previou...Assembly process planning(APP) for complicated products is a time-consuming and difficult work with conventional method. Virtual assembly process planning(VAPP) provides engineers a new and efficiency way. Previous studies in VAPP are almost isolated and dispersive, and have not established a whole understanding and discussed key realization techniques of VAPP from a systemic and integrated view. The integrated virtual assembly process planning(IVAPP) system is a new virtual reality based engineering application, which offers engineers an efficient, intuitive, immersive and integrated method for assembly process planning in a virtual environment. Based on analysis the information integration requirement of VAPP, the architecture of IVAPP is proposed. Through the integrated structure, IVAPP system can realize information integration and workflow controlling. In order to mode/the assembly process in IVAPP, a hierarchical assembly task list(HATL) is presented, in which different assembly tasks for assembling different components are organized into a hierarchical list. A process-oriented automatic geometrical constraint recognition algorithm(AGCR) is proposed, so that geometrical constraints between components can be automatically recognized during the process of interactive assembling. At the same time, a progressive hierarchical reasoning(PHR) model is discussed. AGCR and PHR will greatly reduce the interactive workload. A discrete control node model(DCNM) for cable harness assembly planning in IVAPP is detailed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points, and designs can realize cable harness planning through controlling those control nodes. Mechanical assemblies (such as transmission case and engine of automobile) are used to illustrate the feasibility of the proposed method and algorithms. The application of IVAPP system reveals advantages over the traditional assembly process planning method in shortening the time-consumed in assembly planning and in minimizing the handling difficulty, excessive reorientation and dissimilarity of assembly operations.展开更多
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp...With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51290293,51520105006)National Key R&D Program of China(Grant No.2017YFC0110401)
文摘Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary to guarantee the quality of cable-driven systems during the assembly process. However, the stress relaxation of cables becomes a critical concern during long-term operation. This study investigates the effects of non-uniform deformation and long-term stress relaxation of the driven cables owing to moving parts in the system. A simple closed-loop cable-driven system is built and an alternating load is applied to it to replicate the operation of transmission cables. Under different experimental conditions, the cable tension is recorded and the boundary data are selected to be curve-fitted. Based on the fitted results, a formula is presented to estimate the stress relaxation of cables to evaluate the assembly performance. Further experimental results show that the stress relaxation is mainly caused by cable creep and the assembly procedure. To remove the influence of the assembly procedure, a modified pre-stretching assembly method based on the stress relaxation theory is proposed and verification experiments are performed. Finally, the assembly performance is optimized using a cable-driven surgical robot as an example. This paper proposes a dual stretching method instead of the pre-stretching method to assemble the cable-driven system to improve its performance and prolong its service life.
基金the Civil Airplane Technology Development Program(MJ-2017-G-70)Defense Industrial Technology Development Program(JCKY 2018601 C 011)the MIIT(Ministry of Industry and Information Technology)Key Laboratory of Smart Manufacturing for High-end Aerospace Products,and the Beijing Key Laboratory of Digital Design and Manufacturing.
文摘Background Assembly guided by paper documents is the most widespread type used in the process of aircraft cable assembly.This process is very complicated and requires assembly workers with high-level skills.The technologies of wearable Augmented Reality(AR)and portable visual inspection can be exploited to improve the efficiency and the quality of cable assembly.Methods In this study,we propose a smart assistance system for cable assembly that combines wearable AR with portable visual inspection.Specifically,a portable visual device based on binocular vision and deep learning is developed to realize fast detection and recognition of cable brackets that are installed on aircraft airframes.A Convolutional Neural Network(CNN)is then developed to read the texts on cables after images are acquired from the camera of the wearable AR device.An authoring tool that was developed to create and manage the assembly process is proposed to realize visual guidance of the cable assembly process based on a wearable AR device.The system is applied to cable assembly on an aircraft bulkhead prototype.Results The results show that this system can recognize the number,types,and locations of brackets,and can correctly read the text of aircraft cables.The authoring tool can assist users who lack professional programming experience in establishing a process plan,i.e.,assembly outline based on AR for cable assembly.Conclusions The system can provide quick assembly guidance for aircraft cable with texts,images,and a 3 D model.It is beneficial for reducing the dependency on paper documents,labor intensity,and the error rate.
基金the National Defense Fundamental Research Foundation of China(JCKY2017204B502,JCKY2016204A502)and National Natural Science Foundation of China(51935003).
文摘The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.
基金Sponsored by the National Natural Science Foundation,China(No.50475162)
文摘Based on the analysis of characteristic of cable harness planning in virtual environment,a discrete control node modeling (DCNM) method of cable harness in virtual environment and the cable harness assembly routing technique based on it are proposed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points,and the design can realize cable harness planning through controlling those control nodes. This method of cable harness routing in the virtual environment breaks the status that virtual assembly process planning is just suitable for the rigid components at present,and impulse the virtual assembly process planning to be more practical. Relation algorithms have been verified in a self-developed system named virtual cable harness assembly planning (VCHAP) system,and this VCHAP system has been applied in assembly process planning of aerospace-related products.
基金supported by National Natural Science Foundation of China (Grant No. 50805009)The Eleventh Five Year Plan Defense Pre-Research Fund, China (Grant No. 51318010205)
文摘Assembly process planning(APP) for complicated products is a time-consuming and difficult work with conventional method. Virtual assembly process planning(VAPP) provides engineers a new and efficiency way. Previous studies in VAPP are almost isolated and dispersive, and have not established a whole understanding and discussed key realization techniques of VAPP from a systemic and integrated view. The integrated virtual assembly process planning(IVAPP) system is a new virtual reality based engineering application, which offers engineers an efficient, intuitive, immersive and integrated method for assembly process planning in a virtual environment. Based on analysis the information integration requirement of VAPP, the architecture of IVAPP is proposed. Through the integrated structure, IVAPP system can realize information integration and workflow controlling. In order to mode/the assembly process in IVAPP, a hierarchical assembly task list(HATL) is presented, in which different assembly tasks for assembling different components are organized into a hierarchical list. A process-oriented automatic geometrical constraint recognition algorithm(AGCR) is proposed, so that geometrical constraints between components can be automatically recognized during the process of interactive assembling. At the same time, a progressive hierarchical reasoning(PHR) model is discussed. AGCR and PHR will greatly reduce the interactive workload. A discrete control node model(DCNM) for cable harness assembly planning in IVAPP is detailed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points, and designs can realize cable harness planning through controlling those control nodes. Mechanical assemblies (such as transmission case and engine of automobile) are used to illustrate the feasibility of the proposed method and algorithms. The application of IVAPP system reveals advantages over the traditional assembly process planning method in shortening the time-consumed in assembly planning and in minimizing the handling difficulty, excessive reorientation and dissimilarity of assembly operations.
文摘With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.