期刊文献+
共找到4,456篇文章
< 1 2 223 >
每页显示 20 50 100
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
1
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 high-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
2
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 high-speed penetration Concrete target EROSION Projectile nose evolution model
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
3
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 high-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Human intrusion detection for high-speed railway perimeter under all-weather condition 被引量:1
4
作者 Pengyue Guo Tianyun Shi +1 位作者 Zhen Ma Jing Wang 《Railway Sciences》 2024年第1期97-110,共14页
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo... Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article. 展开更多
关键词 high-speed rail perimeter Personnel invasion Object detection ALL-WEATHER Radar-camera fusion
下载PDF
A discussion about the limitations of the Eurocode’s high-speed load model for railway bridges
5
作者 Gonçalo Ferreira Pedro Montenegro +2 位作者 JoséRui Pinto António Abel Henriques Rui Calçada 《Railway Engineering Science》 EI 2024年第2期211-228,共18页
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H... High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies. 展开更多
关键词 high-speed load model Dynamic analysis high-speed railways Train signature Railway bridges Deck acceleration
下载PDF
Numerical investigation of friction-heating-pressurization and its control parameters in the shear band of high-speed landslides
6
作者 ZHAO Nenghao CUI Shenghua LU Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3380-3395,共16页
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat... High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding. 展开更多
关键词 high-speed landslide Shear band Friction-heating-pressurization Numerical investigation
下载PDF
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
7
作者 Yue Zhou Xi Wang +5 位作者 Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yu Hou 《Railway Engineering Science》 EI 2024年第2期229-243,共15页
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio... The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently. 展开更多
关键词 high-speed train GEARBOX Bench test Vibration behavior Modal identification
下载PDF
Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds
8
作者 Zun-Di Huang Zhen-Bin Zhou +2 位作者 Ning Chang Zheng-Wei Chen Su-Mei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期975-996,共22页
The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(ID... The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(IDDES)method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds.The effects of marshaling lengths(varying from 3-car to 8-car groups)on the train’s aerodynamic performance,surface pressure,and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes(N-S)equations.The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle cars.Conversely,the marshaling lengths are negatively correlated with the time-average side force coefficient(CS)and time-average lift force coefficient(Cl)of the tail car.Compared to the tail car of the 3-car groups,the CS and Cl fell by 27.77%and 18.29%,respectively,for the tail car of the 8-car groups.It is essential to pay more attention to the operational safety of the head car,as it exhibits the highest time average CS.Additionally,the mean pressure difference between the two sides of the tail car body increased with the marshaling lengths,and the side force direction on the tail car was opposite to that of the head and middle cars.Furthermore,the turbulent kinetic energy of the wake structure on the windward side quickly decreased as marshaling lengths increased. 展开更多
关键词 high-speed maglev train marshaling lengths crosswinds aerodynamic features
下载PDF
Dynamic analysis of axle box bearings on the high-speed train caused by wheel-rail excitation
9
作者 Qiaoying MA Shaopu YANG +2 位作者 Yongqiang LIU Baosen WANG Zechao LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期441-460,共20页
To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response charact... To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings. 展开更多
关键词 high-speed train track irregularity wheel flat dynamic simulation
下载PDF
Influence of pier height on the safety of trains running on high-speed railway bridges during earthquakes
10
作者 NIE Yu-tao GUO Wei +8 位作者 JIANG Li-zhong YU Zhi-wu ZENG Chen WANG Yang HE Xu-en REN Shao-xun HUANG Ren-qiang LIANG Guang-yue LI Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2102-2115,共14页
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper... Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation. 展开更多
关键词 pier height high-speed railway bridge running safety numerical model
下载PDF
Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations
11
作者 Jiaqiong Wang Tao Yang +2 位作者 Chen Hu Yu Zhang Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1203-1218,共16页
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second... To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model. 展开更多
关键词 high-speed partial flow pump orthogonal test optimal design numerical calculation
下载PDF
Field survey and analysis on near-fault severely damaged high-speed railway bridge in 2022 M6.9 Menyuan earthquake
12
作者 Lin Xuchuan Liu Fuxiang Shan Wenchen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期1043-1055,共13页
The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this ... The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas. 展开更多
关键词 Menyuan earthquake field survey high-speed railway bridge near fault seismic damage
下载PDF
Integration of bio-inspired limb-like structure damping into motor suspension of high-speed trains to enhance bogie hunting stability
13
作者 Heng Zhang Liang Ling +1 位作者 Sebastian Stichel Wanming Zhai 《Railway Engineering Science》 EI 2024年第3期324-343,共20页
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ... Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated. 展开更多
关键词 high-speed train Hunting stability Bio-inspired limb-like structure Motor suspension Nonlinear damping
下载PDF
Reflection on methodology of the correlation between electromagnetic interference and safety in high-speed railway
14
作者 Chang Liu Shiwu Yang +2 位作者 Yixuan Yang Hefei Cao Shanghe Liu 《Railway Sciences》 2024年第1期84-96,共13页
Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportation... Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed. 展开更多
关键词 Electromagnetic interference Reliability SAFETY Risk assessment Signaling system high-speed railway
下载PDF
Investigations on High-Speed Flash Boiling Atomization of Fuel Based on Numerical Simulations
15
作者 Wei Zhong Zhenfang Xin +1 位作者 Lihua Wang Haiping Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1427-1453,共27页
Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pr... Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization. 展开更多
关键词 high-speed flash boiling atomization numerical simulations Eulerian description Lagrangian description gasoline direct injection
下载PDF
Investigation on influencing factors of wheel polygonization of a plateau high-speed EMU train
16
作者 Wei Li Xiaoxuan Yang +2 位作者 Peng Wang Zefeng Wen Jian Han 《Railway Sciences》 2024年第5期593-608,共16页
Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to meas... Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains. 展开更多
关键词 Wheel polygonization high-speed EMU train Modal analysis Field tests
下载PDF
Study of the Lift Force Induced by An Interceptor on A High-Speed Mono-Hull:The Affecting Factors and Estimation Formula
17
作者 DENG Rui HU Yu-xiao +3 位作者 HUANG Si-chong SONG Zhi-jie WANG Shi-gang WU Tie-cheng 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期557-571,共15页
To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different ... To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition. 展开更多
关键词 high-speed mono-hull ship INTERCEPTOR lift force formula lift force towing tank test computational fluid dynamics
下载PDF
Experimental and Numerical Investigation on the Aerodynamic Characteristics of High-Speed Pantographs with Supporting Beam Wind Deflectors
18
作者 Shiyang Song Tongxin Han 《Fluid Dynamics & Materials Processing》 EI 2024年第1期127-145,共19页
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s... Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches. 展开更多
关键词 high-speed pantograph aerodynamic lift force supporting beam wind deflectors computational fluid dynamics(CFD)
下载PDF
Flow and sound fields of scaled high-speed trains with different coach numbers running in long tunnel
19
作者 Qiliang Li Yuqing Sun +1 位作者 Menghan Ouyang Zhigang Yang 《Railway Engineering Science》 EI 2024年第3期401-420,共20页
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer... Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number. 展开更多
关键词 Flow and sound fields Scaled high-speed trains Different coach numbers Long tunnel Proper orthogonal decomposition
下载PDF
Theory and practice for assessing structural integrity and dynamical integrity of high-speed trains
20
作者 Weihua Zhang Yuanchen Zeng +1 位作者 Dongli Song Zhiwei Wang 《Railway Sciences》 2024年第2期113-127,共15页
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass... Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains. 展开更多
关键词 Structural integrity Dynamical integrity Vehicle system dynamics high-speed trains BOGIE Integrity assessment FATIGUE
下载PDF
上一页 1 2 223 下一页 到第
使用帮助 返回顶部