This paper presents our investigation into a 220 GHz multicarrier highspeed communication system based on solid state transceivers.The proposed system has eased the demand of high sampling rate analog-to-digital conve...This paper presents our investigation into a 220 GHz multicarrier highspeed communication system based on solid state transceivers.The proposed system has eased the demand of high sampling rate analog-to-digital converter(ADC)by providing several signal carriers in microwave band and converting them to 220 GHz channel.The system consists of a set of 220 GHz solid-state transceiver with 2 signal carriers,two basebands for 4 GSPS ADCs.It has achieved 12.8 Gbps rate real-time signal transmission using 16QAM modulation over a distance of 20 m without any other auxiliary equipment or test instruments.The baseband algorithm overcomes the problem of frequency difference generates by non-coherent structure,which guarantees the feasibility of long-distance transmission application.Most importantly,the proposed system has already carried out multi-channel 8K video parallel transmission through switch equipment,which shows the multicarrier high-speed communication system in submillimeter wave has great application prospects.To the best of the authors’knowledge,this is the first all-solid-state electronics multicarrier communication system in submillimeter and terahertz band.展开更多
In this article,an omnidirectional dual-polarized antenna with synergetic electromagnetic and aerodynamic properties is propounded for high-speed diversity systems.The propounded antenna comprises a probe-fed cavity f...In this article,an omnidirectional dual-polarized antenna with synergetic electromagnetic and aerodynamic properties is propounded for high-speed diversity systems.The propounded antenna comprises a probe-fed cavity for horizontally polarized radiation and a microstrip-fed slot for vertical polarization.Double-layer metasurfaces are properly designed as artificial magnetic conductor boundaries with direct metal-mountable onboard installation and compact sizes.An attached wedge-shaped block is utilized for windage reduction in hydrodynamics.The propounded antenna is fabricated for design verification,and the experimental results agree well with the simulated ones.For vertical polarization,the operating bandwidth is in the range of 2.37–2.55 GHz,and the realized gain variation in the azimuthal radiation pattern is 3.67 decibels(dB).While an impedance bandwidth in the range of 2.45–2.47 GHz and a gain variation of 3.71 dB are also achieved for horizontal polarization.A port isolation more than 33 dB is obtained in a compact volume of 0.247λ_(0)×0.345λ_(0)×0.074λ_(0),whereλ_(0)represents the wavelength in vacuum at the center frequency,wherein the wedge-shaped block is included.The propounded diversity antenna has electromagnetic and aerodynamic merits,and exhibits an excellent potential for high-speed onboard communication.展开更多
The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receivin...The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receiving end,spatial diversity was realized by means of cooperative communication technology based on the uncorrelated characteristics of the channels.The model of mobile communication system in high-speed railway was set up,and a cooperative scheme based on statistics was proposed.Mathematical analysis and simulation results show that the quality of the received signal and the performance of the transmission link are significantly improved using cooperative communication technology compared to that in non-cooperative communication mode.展开更多
The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper...The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper investigates millimeter-Wave(mmWave)extra-large scale(XL)-MIMO-based massive Internet-of-Things(loT)access in near-field HSR communications,and proposes a block simultaneous orthogonal matching pursuit(B-SOMP)-based Active User Detection(AUD)and Channel Estimation(CE)scheme by exploiting the spatial block sparsity of the XLMIMO-based massive access channels.Specifically,we first model the uplink mmWave XL-MIMO channels,which exhibit the near-field propagation characteristics of electromagnetic signals and the spatial non-stationarity of mmWave XL-MIMO arrays.By exploiting the spatial block sparsity and common frequency-domain sparsity pattern of massive access channels,the joint AUD and CE problem can be then formulated as a Multiple Measurement Vectors Compressive Sensing(MIMV-CS)problem.Based on the designed sensing matrix,a B-SOMP algorithm is proposed to achieve joint AUD and CE.Finally,simulation results show that the proposed solution can obtain a better AUD and CE performance than the conventional CS-based scheme for massive IoT access in near-field HSR communications.展开更多
Continuous co-phase traction power system is an effective method to eliminate neutral sections and provide high quality power for both the public grid and the catenary.The substations have the ability to provide coope...Continuous co-phase traction power system is an effective method to eliminate neutral sections and provide high quality power for both the public grid and the catenary.The substations have the ability to provide cooperative support to each other to reduce capacity and improve system reliability.A fast power control method for substations is needed due to rapid load changes and low overload capability of the system.This paper proposes a fast power control method based on high-speed communication between substations,with additional transient power control to significantly improve the dynamic response of the system.展开更多
A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulatio...A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulations is presented for transistor sizing. Simulation results show that an improvement of up to 12% over the conventional technique at 1GHz is obtained with this circuit,which can run 1.6 times faster than the existing technique with the same noise immunity.展开更多
Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique wa...Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.展开更多
A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing...A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing high-speed circuit system can be formulated directly and analyzed conveniently for its normative form. A time-domain analysis method for transmission lines is also introduced. The two methods are combined together to efficiently analyze high-speed circuit systems having general transmission lines. Numerical experiment is presented and the results are compared with that calculated by Hspice.展开更多
High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator li...High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator linear synchronous motor(LSM)is established based on the structure of the test prototype.After calculation,it is compared with the experimental data and verified.On this basis,a field-circuit coupling model based on inverter circuit is established,and the influence of carrier wave ratio change on the output characteristics of LSM is calculated and analyzed.Finally,the filter circuit is introduced into the field-circuit coupling model,and the influence of the filter circuit on the output characteristics of the LSM is compared and analyzed.展开更多
This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calcul...This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry...Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry out the file design work using hardware language as the foundation.Subsequently,the computer system automatically compiles and integrates the file to achieve simulation goals,and can complete the programming download of the target chip.At present,this technology is widely used in the communication of electronic circuits.This paper summarizes EDA technology and analyzes its specific application in communication electronic circuits,aiming at promoting the application of CDA technology and promoting the further development of the communication field.展开更多
In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This ...In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This paper designs and implements a Wireless Train Communication Network(WTCN)to enhance the existing train network infrastructure.To address the challenges that wireless communication technology faces in the unique environment of high-speed rail,this study first analyzes various onboard environments and simulates several typical scenarios in the laboratory.Integrating the specific application scenarios and service characteristics of the high-speed train control network,we conduct measurements and validations of WiFi performance,exploring the specific impacts of different factors on throughput and delay.展开更多
The Shipborne acoustic communication system of the submersible Shenhai Yongshi works in vertical, horizontal and slant channels according to the relative positions. For ease of use, an array combined by a vertical-con...The Shipborne acoustic communication system of the submersible Shenhai Yongshi works in vertical, horizontal and slant channels according to the relative positions. For ease of use, an array combined by a vertical-cone directional transducer and a horizontal-toroid one is installed on the mothership. Improved techniques are proposed to combat adverse channel conditions, such as frequency selectivity, non-stationary ship noise, and Doppler effects of the platform’s nonlinear movement. For coherent modulation, a turbo-coded single-carrier scheme is used. In the receiver, the sparse decision-directed Normalized Least-Mean-Square soft equalizer automatically adjusts the tap pattern and weights according to the multipath structure, the two receivers’ asymmetry, the signal’s frequency selectivity and the noise’s spectrum fluctuation. The use of turbo code in turbo equalization significantly suppresses the error floor and decreases the equalizer’s iteration times, which is verified by both the extrinsic information transfer charts and bit-error-rate performance. For noncoherent modulation, a concatenated error correction scheme of nonbinary convolutional code and Hadamard code is adopted to utilize full frequency diversity. Robust and lowcomplexity synchronization techniques in the time and Doppler domains are proposed. Sea trials with the submersible to a maximum depth of over 4500 m show that the shipborne communication system performs robustly during the adverse conditions. From the ten-thousand communication records in the 28 dives in 2017, the failure rate of the coherent frames and that of the noncoherent packets are both below 10%, where both synchronization errors and decoding errors are taken into account.展开更多
With the successful demonstration of terahertz(THz)high-speed wireless data transmission,the THz frequencies are now becoming a worth candidate for post-5G wireless communications.On the other hand,to bring THz commun...With the successful demonstration of terahertz(THz)high-speed wireless data transmission,the THz frequencies are now becoming a worth candidate for post-5G wireless communications.On the other hand,to bring THz communications a step closer to real scenario application,solving high data rate realtime transmission is also an important issue.This paper describes a 220-GHz solid-state dual-carrier wireless link whose maximum transmission real-time data rates are 20.8 Gbps(10.4 Gbps per channel).By aggregating two carrier signals in the THz band,the contradiction between high real-time data rate communication and low sampling rate analog-to-digital(ADC)and digital-to-analog converter(DAC)is alleviated.The transmitting and receiving front-ends consist of 220-GHz diplexers,220-GHz sub-harmonic mixers based on anti-parallel Schottky barrier diodes,G-band low-noise amplifiers(LNA),WR-4.3 band high-gain Cassegrain antennas,high data rates dual-DAC and-ADC baseband platform and other components.The low-density parity-check(LDPC)encoding is also realized to improve the bit error rate(BER)of the received signal.Modulated signals are centered at 214.4 GHz and 220.6 GHz with-11.9 dBm and-13.4 dBm output power for channel 1 and 2,respectively.This link is demonstrated to achieve 20.8-Gbps real-time data transmission using 16-QAM modulation over a distance of 1030 m.The measured signal to noise ratio(SNR)is 17.3 dB and 16.5 dB,the corresponding BER is 8.6e-7 and 3.8e-7,respectively.Furthermore,4K video transmission is also carried out which is clear and free of stutter.The successful transmission of aggregated channels in this wireless link shows the great potential of THz communication for future wireless high-rate real-time data transmission applications.展开更多
Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless commu...Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.展开更多
Intra-body communication (IBC) is a new,emerging,short-range and human body based communication methodology.It is a technique to network various devices on human body,by utilizing the conducting properties of human ti...Intra-body communication (IBC) is a new,emerging,short-range and human body based communication methodology.It is a technique to network various devices on human body,by utilizing the conducting properties of human tissues,suitable for currently fast developing Body area network (BAN)/Body sensor network (BSN).IBC is believed to have advantages in power consumption,electromagnetic radiation,interference from external electromagnetic noise,security,and restriction in spectrum resource.In this article,the authors develop two models,which are analytical and empirical approaches,for comparing the performance and accuracy of IBC on a human limb.Through in vivo experiment of five volunteers,both models basically match with the experimental result with equivalent circuit model superior than electromagnetic model in term of maximum error.展开更多
In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circu...In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circular or linear,is considered.Based on the elliptical coverage cell,an optimization problem for the beamforming design is formulated to maximize the percentage of railway coverage,subject to the constraints on equal expected designed propagation gain(the gain obtained by a combination of designed beam and propagation channel)on the elliptical curve,i.e.,the expectation of designed propagation gain on the elliptical curve are all equal.Considering that the coverage can be improved by increasing the minimum designed propagation gain on the railway,the problem can be recast to maximizing the equal expected designed propagation gain on the elliptical curve.Subsequently,a beamforming design with an improved β-fairness power allocation,where the optimization problem is formulated to maximize the minimum expected received power over time with the constraints on elliptical cell based beamforming and mobile service amount,is proposed to further improve the coverage.An alternating iteration algorithm is developed to find the optimal beamforming vector and the instantaneous transmit power.Through numerical results,it is found that the beamforming designed on the elliptical curve covers longer railway than beamforming designed on the railway directly,and the coverage of elliptical cell based beamforming can be increased with the eccentricity.In addition,beamforming with the improvedβ-fairness power allocation can further improve the railway coverage and mobile service amount simultaneously.Moreover,it is shown that the larger eccentricity of the ellipse with appropriately chosen BS location,the larger coverage distance.展开更多
This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements co...This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements conducted on Beijing to Tianjin HSR line in China. A long-term evolution-based channel sounding system is utilized in the measurements to obtain the channel data. By applying a proposed time-delay based dynamic partition method, multi-link channel impulse responses are extracted from the raw channel data. Then, the statistical results of LSPs, including shadow fading, K-factor, and root-mean-square delay spread are derived and the cross-correlation coefficients of these LPSs are calculated. Moreover, the SSF spatial correlation and cross-correlation of SSF are analyzed. These results can be used to exploit multi-link channel model and to optimize the next-generation HSR communication system.展开更多
This study introduces a new continuous time differential system,which contains ten terms with three quadratic nonlinearities.The new system can demonstrate hyperchaotic,chaotic,quasi-periodic,and periodic behaviors fo...This study introduces a new continuous time differential system,which contains ten terms with three quadratic nonlinearities.The new system can demonstrate hyperchaotic,chaotic,quasi-periodic,and periodic behaviors for its different parameter values.All theoretical and numerical analysis are investigated to confirm the complex hyperchaotic behavior of our proposed model using many tools that include Kaplan-Yorke dimension,equilibrium points stability,bifurcation diagrams,and Lyapunov exponents.By means of Multisim software,the authors also designed an electronic circuit to confirm our proposed systems’physical feasibility.MATLAB and Multisim simulation results excellently agree with each other,which validate the feasibility of our new ten terms hyperchaotic system and make it very desirable to use in different domains especially in chaotic-based communication.Furthermore,by employing the drive response synchronisation,we developed a secure communication strategy for the proposed system.Findings from the proposed scheme show that the proposed approach was successful in completing the encryption and decryption procedure.展开更多
基金National Key R&D Program of China under Grant No.2018YFF0109702the National Natural Science Foundation of China under Grant No.61771116 and No.91738102.
文摘This paper presents our investigation into a 220 GHz multicarrier highspeed communication system based on solid state transceivers.The proposed system has eased the demand of high sampling rate analog-to-digital converter(ADC)by providing several signal carriers in microwave band and converting them to 220 GHz channel.The system consists of a set of 220 GHz solid-state transceiver with 2 signal carriers,two basebands for 4 GSPS ADCs.It has achieved 12.8 Gbps rate real-time signal transmission using 16QAM modulation over a distance of 20 m without any other auxiliary equipment or test instruments.The baseband algorithm overcomes the problem of frequency difference generates by non-coherent structure,which guarantees the feasibility of long-distance transmission application.Most importantly,the proposed system has already carried out multi-channel 8K video parallel transmission through switch equipment,which shows the multicarrier high-speed communication system in submillimeter wave has great application prospects.To the best of the authors’knowledge,this is the first all-solid-state electronics multicarrier communication system in submillimeter and terahertz band.
基金support from the Natural Science Foundation of Beijing Manipulate (4182029)the Youth Top Program of Beijing Outstanding Talent Funding Projectthe National Key Research and Development Program of China (2018YFB1801603)
文摘In this article,an omnidirectional dual-polarized antenna with synergetic electromagnetic and aerodynamic properties is propounded for high-speed diversity systems.The propounded antenna comprises a probe-fed cavity for horizontally polarized radiation and a microstrip-fed slot for vertical polarization.Double-layer metasurfaces are properly designed as artificial magnetic conductor boundaries with direct metal-mountable onboard installation and compact sizes.An attached wedge-shaped block is utilized for windage reduction in hydrodynamics.The propounded antenna is fabricated for design verification,and the experimental results agree well with the simulated ones.For vertical polarization,the operating bandwidth is in the range of 2.37–2.55 GHz,and the realized gain variation in the azimuthal radiation pattern is 3.67 decibels(dB).While an impedance bandwidth in the range of 2.45–2.47 GHz and a gain variation of 3.71 dB are also achieved for horizontal polarization.A port isolation more than 33 dB is obtained in a compact volume of 0.247λ_(0)×0.345λ_(0)×0.074λ_(0),whereλ_(0)represents the wavelength in vacuum at the center frequency,wherein the wedge-shaped block is included.The propounded diversity antenna has electromagnetic and aerodynamic merits,and exhibits an excellent potential for high-speed onboard communication.
基金Project of Science and Technology Research and Development Plan of China Railway Corporation(No.2013G010-D)Foundation of a Hundred Youth Talent Training Program of Lanzhou Jiaotong University
文摘The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receiving end,spatial diversity was realized by means of cooperative communication technology based on the uncorrelated characteristics of the channels.The model of mobile communication system in high-speed railway was set up,and a cooperative scheme based on statistics was proposed.Mathematical analysis and simulation results show that the quality of the received signal and the performance of the transmission link are significantly improved using cooperative communication technology compared to that in non-cooperative communication mode.
基金supported in part by the Natural Science Foundation of China(NSFC)under Grant 62071044 and Grant 62088101in part by the Shandong Province Natural Science Foundation under Grant ZR2022YQ62in part by the Beijing Nova Program.
文摘The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper investigates millimeter-Wave(mmWave)extra-large scale(XL)-MIMO-based massive Internet-of-Things(loT)access in near-field HSR communications,and proposes a block simultaneous orthogonal matching pursuit(B-SOMP)-based Active User Detection(AUD)and Channel Estimation(CE)scheme by exploiting the spatial block sparsity of the XLMIMO-based massive access channels.Specifically,we first model the uplink mmWave XL-MIMO channels,which exhibit the near-field propagation characteristics of electromagnetic signals and the spatial non-stationarity of mmWave XL-MIMO arrays.By exploiting the spatial block sparsity and common frequency-domain sparsity pattern of massive access channels,the joint AUD and CE problem can be then formulated as a Multiple Measurement Vectors Compressive Sensing(MIMV-CS)problem.Based on the designed sensing matrix,a B-SOMP algorithm is proposed to achieve joint AUD and CE.Finally,simulation results show that the proposed solution can obtain a better AUD and CE performance than the conventional CS-based scheme for massive IoT access in near-field HSR communications.
基金supported by the National Natural Science Foundation of China under Grant 52277190the Major Science and Technology Projects of China Railway Electrification Engineering Group Co.,LTD.(20192001148).
文摘Continuous co-phase traction power system is an effective method to eliminate neutral sections and provide high quality power for both the public grid and the catenary.The substations have the ability to provide cooperative support to each other to reduce capacity and improve system reliability.A fast power control method for substations is needed due to rapid load changes and low overload capability of the system.This paper proposes a fast power control method based on high-speed communication between substations,with additional transient power control to significantly improve the dynamic response of the system.
文摘A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulations is presented for transistor sizing. Simulation results show that an improvement of up to 12% over the conventional technique at 1GHz is obtained with this circuit,which can run 1.6 times faster than the existing technique with the same noise immunity.
文摘Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.
文摘A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing high-speed circuit system can be formulated directly and analyzed conveniently for its normative form. A time-domain analysis method for transmission lines is also introduced. The two methods are combined together to efficiently analyze high-speed circuit systems having general transmission lines. Numerical experiment is presented and the results are compared with that calculated by Hspice.
文摘High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator linear synchronous motor(LSM)is established based on the structure of the test prototype.After calculation,it is compared with the experimental data and verified.On this basis,a field-circuit coupling model based on inverter circuit is established,and the influence of carrier wave ratio change on the output characteristics of LSM is calculated and analyzed.Finally,the filter circuit is introduced into the field-circuit coupling model,and the influence of the filter circuit on the output characteristics of the LSM is compared and analyzed.
文摘This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.
文摘Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry out the file design work using hardware language as the foundation.Subsequently,the computer system automatically compiles and integrates the file to achieve simulation goals,and can complete the programming download of the target chip.At present,this technology is widely used in the communication of electronic circuits.This paper summarizes EDA technology and analyzes its specific application in communication electronic circuits,aiming at promoting the application of CDA technology and promoting the further development of the communication field.
基金support from the Beijing Engineering Research Center of High-speed Railway Broadband Mobile Communications(BHRC-2024-1)Beijing Jiaotong University,the National Natural Science Foundation of China(U21A20445).
文摘In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This paper designs and implements a Wireless Train Communication Network(WTCN)to enhance the existing train network infrastructure.To address the challenges that wireless communication technology faces in the unique environment of high-speed rail,this study first analyzes various onboard environments and simulates several typical scenarios in the laboratory.Integrating the specific application scenarios and service characteristics of the high-speed train control network,we conduct measurements and validations of WiFi performance,exploring the specific impacts of different factors on throughput and delay.
基金financially supported by the National Natural Science Foundation of China(Grant No.61471351)the National Key Research and Development Program of China(Grant Nos.2016YFC0300300 and 2016YFC0300605)the National High Technology Research and Development Program of China(863 Program,Grant No.2009AA093301)
文摘The Shipborne acoustic communication system of the submersible Shenhai Yongshi works in vertical, horizontal and slant channels according to the relative positions. For ease of use, an array combined by a vertical-cone directional transducer and a horizontal-toroid one is installed on the mothership. Improved techniques are proposed to combat adverse channel conditions, such as frequency selectivity, non-stationary ship noise, and Doppler effects of the platform’s nonlinear movement. For coherent modulation, a turbo-coded single-carrier scheme is used. In the receiver, the sparse decision-directed Normalized Least-Mean-Square soft equalizer automatically adjusts the tap pattern and weights according to the multipath structure, the two receivers’ asymmetry, the signal’s frequency selectivity and the noise’s spectrum fluctuation. The use of turbo code in turbo equalization significantly suppresses the error floor and decreases the equalizer’s iteration times, which is verified by both the extrinsic information transfer charts and bit-error-rate performance. For noncoherent modulation, a concatenated error correction scheme of nonbinary convolutional code and Hadamard code is adopted to utilize full frequency diversity. Robust and lowcomplexity synchronization techniques in the time and Doppler domains are proposed. Sea trials with the submersible to a maximum depth of over 4500 m show that the shipborne communication system performs robustly during the adverse conditions. From the ten-thousand communication records in the 28 dives in 2017, the failure rate of the coherent frames and that of the noncoherent packets are both below 10%, where both synchronization errors and decoding errors are taken into account.
基金the National Natural Science Foundation of China(NSFC)under Grant 91738102,Grant 61771116,and Grant 62022022。
文摘With the successful demonstration of terahertz(THz)high-speed wireless data transmission,the THz frequencies are now becoming a worth candidate for post-5G wireless communications.On the other hand,to bring THz communications a step closer to real scenario application,solving high data rate realtime transmission is also an important issue.This paper describes a 220-GHz solid-state dual-carrier wireless link whose maximum transmission real-time data rates are 20.8 Gbps(10.4 Gbps per channel).By aggregating two carrier signals in the THz band,the contradiction between high real-time data rate communication and low sampling rate analog-to-digital(ADC)and digital-to-analog converter(DAC)is alleviated.The transmitting and receiving front-ends consist of 220-GHz diplexers,220-GHz sub-harmonic mixers based on anti-parallel Schottky barrier diodes,G-band low-noise amplifiers(LNA),WR-4.3 band high-gain Cassegrain antennas,high data rates dual-DAC and-ADC baseband platform and other components.The low-density parity-check(LDPC)encoding is also realized to improve the bit error rate(BER)of the received signal.Modulated signals are centered at 214.4 GHz and 220.6 GHz with-11.9 dBm and-13.4 dBm output power for channel 1 and 2,respectively.This link is demonstrated to achieve 20.8-Gbps real-time data transmission using 16-QAM modulation over a distance of 1030 m.The measured signal to noise ratio(SNR)is 17.3 dB and 16.5 dB,the corresponding BER is 8.6e-7 and 3.8e-7,respectively.Furthermore,4K video transmission is also carried out which is clear and free of stutter.The successful transmission of aggregated channels in this wireless link shows the great potential of THz communication for future wireless high-rate real-time data transmission applications.
基金supported in part by the National Natural Science Foundations(Nos.61032002 and 61102050)the National Science and Technology Major Project(No.2011ZX03001-007-01)+1 种基金the Beijing Natural Science Foundation(No.4122061)the Fundamental Research Funds for the Central Universities(No.2012YJS005)
文摘Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.
基金supported by The Science and Technology Development Fund of Macao under grant 014/2007/A1,063/2009/A and 024/2009/A1the Research Committee of the University of Macao under Grants UL012/09-Y1/EEE/VMI01/FST,RG077/09-10S/ VMI/FST,RG075/07-08S/10T/VMI/FST,and RG072/09-10S/ MPU/FSTthe Funds of Fujian Provincial Department of Science & Technology as 2007Y0024,2007T0009,2007I0018 and 2008J1005
文摘Intra-body communication (IBC) is a new,emerging,short-range and human body based communication methodology.It is a technique to network various devices on human body,by utilizing the conducting properties of human tissues,suitable for currently fast developing Body area network (BAN)/Body sensor network (BSN).IBC is believed to have advantages in power consumption,electromagnetic radiation,interference from external electromagnetic noise,security,and restriction in spectrum resource.In this article,the authors develop two models,which are analytical and empirical approaches,for comparing the performance and accuracy of IBC on a human limb.Through in vivo experiment of five volunteers,both models basically match with the experimental result with equivalent circuit model superior than electromagnetic model in term of maximum error.
基金This work has been supported in part by the National Natural Science Foundation of China(61671205)in part by the Shanghai Rising-Star Program(21QA1402700)in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University(No.2020D02).
文摘In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circular or linear,is considered.Based on the elliptical coverage cell,an optimization problem for the beamforming design is formulated to maximize the percentage of railway coverage,subject to the constraints on equal expected designed propagation gain(the gain obtained by a combination of designed beam and propagation channel)on the elliptical curve,i.e.,the expectation of designed propagation gain on the elliptical curve are all equal.Considering that the coverage can be improved by increasing the minimum designed propagation gain on the railway,the problem can be recast to maximizing the equal expected designed propagation gain on the elliptical curve.Subsequently,a beamforming design with an improved β-fairness power allocation,where the optimization problem is formulated to maximize the minimum expected received power over time with the constraints on elliptical cell based beamforming and mobile service amount,is proposed to further improve the coverage.An alternating iteration algorithm is developed to find the optimal beamforming vector and the instantaneous transmit power.Through numerical results,it is found that the beamforming designed on the elliptical curve covers longer railway than beamforming designed on the railway directly,and the coverage of elliptical cell based beamforming can be increased with the eccentricity.In addition,beamforming with the improvedβ-fairness power allocation can further improve the railway coverage and mobile service amount simultaneously.Moreover,it is shown that the larger eccentricity of the ellipse with appropriately chosen BS location,the larger coverage distance.
基金supported by the Beijing Municipal Natural Science Foundation under Grant 4174102the National Natural Science Foundation of China under Grant 61701017+1 种基金the Open Research Fund through the National Mobile Communications Research Laboratory, Southeast University, under Grant 2018D11the Fundamental Research Funds for the Central Universities under Grant 2018JBM003
文摘This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements conducted on Beijing to Tianjin HSR line in China. A long-term evolution-based channel sounding system is utilized in the measurements to obtain the channel data. By applying a proposed time-delay based dynamic partition method, multi-link channel impulse responses are extracted from the raw channel data. Then, the statistical results of LSPs, including shadow fading, K-factor, and root-mean-square delay spread are derived and the cross-correlation coefficients of these LPSs are calculated. Moreover, the SSF spatial correlation and cross-correlation of SSF are analyzed. These results can be used to exploit multi-link channel model and to optimize the next-generation HSR communication system.
文摘This study introduces a new continuous time differential system,which contains ten terms with three quadratic nonlinearities.The new system can demonstrate hyperchaotic,chaotic,quasi-periodic,and periodic behaviors for its different parameter values.All theoretical and numerical analysis are investigated to confirm the complex hyperchaotic behavior of our proposed model using many tools that include Kaplan-Yorke dimension,equilibrium points stability,bifurcation diagrams,and Lyapunov exponents.By means of Multisim software,the authors also designed an electronic circuit to confirm our proposed systems’physical feasibility.MATLAB and Multisim simulation results excellently agree with each other,which validate the feasibility of our new ten terms hyperchaotic system and make it very desirable to use in different domains especially in chaotic-based communication.Furthermore,by employing the drive response synchronisation,we developed a secure communication strategy for the proposed system.Findings from the proposed scheme show that the proposed approach was successful in completing the encryption and decryption procedure.