期刊文献+
共找到4,528篇文章
< 1 2 227 >
每页显示 20 50 100
Theoretical modeling of cutting temperature in high-speed end milling process for die/mold machining 被引量:4
1
作者 YingTang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期90-95,共6页
A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating u... A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear. 展开更多
关键词 end milling cutting temperature intermittent cutting die/mold machining
下载PDF
Prediction of Wearing of Cutting Tools Using Real Time Machining Parameters and Temperature Using Rayleigh-Ham Method
2
作者 Jean Nyatte Nyatte Fabrice Alban Epee +3 位作者 Wilba Christophe Kikmo Samuel Batambock Claude Valéry Ngayihi Abbe Robert Nzengwa 《Modern Mechanical Engineering》 2023年第2期35-54,共20页
Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determin... Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining. 展开更多
关键词 machining cutting Temperature Modeling Wear cutting Tool
下载PDF
FLOW STRESS MODELING FOR AERONAUTICAL ALUMINUM ALLOY 7050-T7451 IN HIGH-SPEED CUTTING 被引量:15
3
作者 付秀丽 艾兴 +1 位作者 万熠 张松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期139-144,共6页
The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical ... The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations. 展开更多
关键词 high-speed cutting flow stress models SHPB compression experiment FEM simulation
下载PDF
CUTTING TEMPERATURE MEASUREMENT IN HIGH-SPEED END MILLING 被引量:8
4
作者 全燕鸣 林金萍 王成勇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期47-51,共5页
A computer aided measurement system is used to measure the cutting temperature directly in high-speed machining by natural thermocouples and standard thermocouples. In this system the tool/workpiece interface temperat... A computer aided measurement system is used to measure the cutting temperature directly in high-speed machining by natural thermocouples and standard thermocouples. In this system the tool/workpiece interface temperature is measured by the tool/workpiece natural thermocouple, while the temperature distribution on the workpiece surface and that of interior are measured by some standard thermocouples prearranged at proper positions. The system can be used to measure cutting temperature in the machining with the rotary cutting tools, such as vertical drill and end milling cutter. It is practically used for the research on high-speed milling with hardened steel. 展开更多
关键词 high-speed milling end milling cutter cutting temperature THERMOCOUPLE
下载PDF
Tool-path planning for free-form surface high-speed high-resolution machining using torus cutter
5
作者 王宇晗 李儒琼 +1 位作者 吴祖育 陈兆能 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第3期337-342,共6页
In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional... In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for high-speed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore, a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated. 展开更多
关键词 high-speed machining tool-path planning free-form surface torus cutter
下载PDF
CUTTING FORCES FOR HIGH-SPEED DRILLING OF COMPOSITES 被引量:1
6
作者 全燕鸣 钟文旺 熊国雄 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期175-179,共5页
The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation sp... The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries. 展开更多
关键词 high-speed drillings composites carbide drill cutting force orthogonal experiment
下载PDF
Microstructure and cutting performance of CrTiAlN coating for high-speed dry milling 被引量:9
7
作者 鲁力 王启民 +5 位作者 陈柄洲 敖永翠 余东海 王成勇 伍尚华 Kwang Ho KIM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1800-1806,共7页
Using a closed field unbalanced magnetron sputtering system,the cemented carbide end mills were coated with a CrTiAlN hard coating,which consisted of a Cr adhesive layer,a CrN interlayer and a CrTiAlN top layer.The mi... Using a closed field unbalanced magnetron sputtering system,the cemented carbide end mills were coated with a CrTiAlN hard coating,which consisted of a Cr adhesive layer,a CrN interlayer and a CrTiAlN top layer.The microstructure and mechanical properties of the coating were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),micro indentation and scratch test.The cutting performance of the coated end mills were conducted by high-speed dry milling hardened steel(P20,HRC 45).The results indicates that the coating is composed of(Cr,Ti,Al)N columnar grains with nanolayers.The coating exhibits good adhesion to cemented carbide substrate and high microhardness of around 30 GPa.The coated end mills show significant improvement on tool life and much lower cutting force as compared to the uncoated ones.And the related mechanisms were discussed. 展开更多
关键词 CrTiAlN coating high-speed machining hardened steel tool wear
下载PDF
Machine Vision Based Fish Cutting Point Prediction for Target Weight
8
作者 Yonghun Jang Yeong-Seok Seo 《Computers, Materials & Continua》 SCIE EI 2023年第4期2247-2263,共17页
Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offis... Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offish to be supplied, most seafood processing companies have yet to installautomation equipment. Such absence of automation equipment for seafoodprocessing incurs a considerable cost regarding labor force, economy, andtime. Moreover, workers responsible for fish processing are exposed to risksbecause fish processing tasks require the use of dangerous tools, such aspower saws or knives. To solve these problems observed in the fish processingfield, this study proposed a fish cutting point prediction method based onAI machine vision and target weight. The proposed method performs threedimensional(3D) modeling of a fish’s form based on image processing techniquesand partitioned random sample consensus (RANSAC) and extracts 3Dfeature information. Then, it generates a neural network model for predictingfish cutting points according to the target weight by performing machinelearning of the extracted 3D feature information and measured weight information.This study allows for the direct cutting of fish based on cutting pointspredicted by the proposed method. Subsequently, we compared the measuredweight of the cut pieces with the target weight. The comparison result verifiedthat the proposed method showed a mean error rate of approximately 3%. 展开更多
关键词 machine vision fish cutting weight prediction artificial intelligence deep learning image processing
下载PDF
Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives 被引量:8
9
作者 Kai Cheng Zhi-Chao Niu +2 位作者 Robin C.Wang Richard Rakowski Richard Bateman 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1162-1176,共15页
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative des... Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultra- precision and micro manufacturing purposes. Implemen- tation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation tech- niques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algo- rithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in- process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) applica- tion exemplars on adaptive smart machining. 展开更多
关键词 Smart cutting tool Smart machining Fast toolservo (FFS) Precision machining Micro manufacturing Smart tooling
下载PDF
Approach for Polishing Diamond Coated Complicated Cutting Tool: Abrasive Flow Machining(AFM) 被引量:2
10
作者 Xin-Chang Wang Cheng-Chuan Wang +1 位作者 Chang-Ying Wang Fang-Hong Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期154-168,共15页
Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the... Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance 展开更多
关键词 Abrasive flow machining Diamond coated complicated cutting tool Surface roughness Radius of the cutting edge machining quality Tool lifetime
下载PDF
An Optimal Feed Interpolator Based on G^2 Continuous Bézier Curves for High-Speed Machining of Linear Tool Path 被引量:6
11
作者 Yongqiao Jin Sheng Zhao Yuhan Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期109-118,共10页
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange... A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments. 展开更多
关键词 G^2 CONTINUOUS path Least SQUARE method high-speed machining CONTINUOUS short SEGMENTS Optimal FEED INTERPOLATOR Data compression
下载PDF
Mesoplasticity Approach to Studies of the Cutting Mechanism in Ultra-precision Machining 被引量:2
12
作者 LEE WB Rongbin WANG Hao +2 位作者 TO Suet CHEUNG Chi Fai CHAN Chang Yuen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期219-228,共10页
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast... There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale. 展开更多
关键词 ultra-precision machining cutting mechanism mesoplasticity shear angle prediction size effect micro-cutting force variation high frequency tool-tip vibration
下载PDF
Study on Simulation of Machining Errors Caused by Cutting Force 被引量:1
13
作者 SHAO Xiaodong1,ZHANG Liu2,LIN Zhaoxu1 (1. School of Mechano-electronic Engineering,Xidian University,Xi’an 710071,China 2. 14th Institute of China Electronics Technology Company,Najin 200013,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期167-172,共6页
Machining errors caused by cutting force are studied in this paper,and an algorithm to simulate errors is putted forward. In the method,continuous machining process is separated into many machining moments. The deform... Machining errors caused by cutting force are studied in this paper,and an algorithm to simulate errors is putted forward. In the method,continuous machining process is separated into many machining moments. The deformation of work-piece and cutter at every moment is calculated by finite element method. The machined work-piece is gained by Boolean operation between deformed work-piece and cutter. By analyzing data of final work-piece,machining errors are predicted. The method is proved true by experiment. 展开更多
关键词 machining ERROR SIMULATION cutting force FEM
下载PDF
Adaptation of feed rate for 3-axis CNC high-speed machining 被引量:1
14
作者 张得礼 周来水 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第3期391-395,共5页
To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with con... To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine. 展开更多
关键词 CNC feedrate smoothing S-curve velocity profile high-speed machining
下载PDF
Development of High-speed Machining Database with Case-based Reasoning
15
作者 WANG Zun-tong, LIU Zhan-qiang, AI Xing (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期48-49,共2页
Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very impo... Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications. 展开更多
关键词 case-based reasoning high-speed machining DATABASE CASE
下载PDF
Optimization of Cutting Variables in Machining
16
作者 Zhang Xueyan Wu Zhenye Zhou Guohua School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China 《Journal of Modern Transportation》 1996年第2期98-104,共7页
ith the three criteria for cutting variables proposed by W.W.Gilbert and K.Hitomi,this paper analyzes the reasonable selection of cutting variables,and furth... ith the three criteria for cutting variables proposed by W.W.Gilbert and K.Hitomi,this paper analyzes the reasonable selection of cutting variables,and further states the relations among maximum profit oriented cutting speed,minimum cost oriented cutting speed and maximum productivity oriented cutting speed.It puts forward a mathematical model for the optimization of cutting variables in machining. 展开更多
关键词 machining MAXIMUM PROFIT cutting SPEED
下载PDF
The P40 Cutting Tool Wear Modelization Machining Fk20MnCr5
17
作者 Idriss Amara Embarek Ferkous +1 位作者 Faycal Bentaleb Razika Aouad 《Engineering(科研)》 2011年第9期928-934,共7页
This work presents an experimental study to describe a wear zone in the P40 cutting tools used during a dry lathing. Mechanics of cutting has been presented to investigate the effects of edge geometry of the cutting t... This work presents an experimental study to describe a wear zone in the P40 cutting tools used during a dry lathing. Mechanics of cutting has been presented to investigate the effects of edge geometry of the cutting tool carbide cutting insert. In the field of the metals cutting, the wear of the cutting tools leads to a degradation of the cutting zone and work. It is thus important to study the evolution of the cutting criteria allowing to follow the tool degradation during a manufacturing operations and thus to decide whether to replace the tool or not. Three parameters: cutting speed, cutting feed and cutting depth are considered to modelize the tool wear. An experimental device, particularly, a work-piece in Fk20MnCr5 material was cutted on a conventional lath for shaping, a high resolution sensor (HRS), had been used for measuring wear zone. The rela- tionship between “the cutting speed, the depth of cut, the feed rate” are analysed and modelled. In order to deduce this shape the spline method to modelize the wear zone has been used and a mathematical model has been proposed. 展开更多
关键词 machining WEAR cutting Tools Dry Lathing
下载PDF
METHOD FOR SUPPRESSING CUTTING CHATTER IN NUMERICAL CONTROL MACHINE TOOLS
18
作者 孙宝寿 黄筱调 +3 位作者 顾伯勤 方成刚 丁文政 魏韬 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期108-114,共7页
A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac... A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter. 展开更多
关键词 numerical control machine tool chatter servo parameter limited cutting width
下载PDF
Failure mode change and material damage with varied machining speeds:a review 被引量:2
19
作者 Jianqiu Zhang Binbin He Bi Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期36-60,共25页
High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not ... High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not been formally reviewed thus far. This article focuses on the solid mechanics framework of adiabatic shear band(ASB) onset and material metallurgical microstructural evolutions in HSM. The ASB onset is described using partial differential systems. Several factors in HSM were considered in the systems, and the ASB onset conditions were obtained by solving these systems or applying the perturbation method to the systems. With increasing machining speed, an ASB can be depressed and further eliminated by shock pressure. The damage observed in HSM exhibits common features. Equiaxed fine grains produced by dynamic recrystallization widely cause damage to ductile materials, and amorphization is the common microstructural evolution in brittle materials. Based on previous studies, potential mechanisms for the phenomena in HSM are proposed. These include the thickness variation of the white layer of ductile materials. These proposed mechanisms would be beneficial to deeply understanding the various phenomena in HSM. 展开更多
关键词 high-speed machining adiabatic shear band subsurface damage dynamic recrystallization
下载PDF
Design and Accuracy Analysis of a Metamorphic CNC Flame Cutting Machine for Ship Manufacturing 被引量:3
20
作者 HU Shenghai ZHANG Manhui +2 位作者 ZHANG Baoping CHEN Xi YU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期930-943,共14页
The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing mach... The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from -0.975 mm to +0.628 mm and orientation error is from -0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a 'large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools. 展开更多
关键词 CNC cutting machine metamorphic principle accuracy analysis screw theory error model
下载PDF
上一页 1 2 227 下一页 到第
使用帮助 返回顶部