Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ...Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.展开更多
To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabric...To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabrication of samples with exceptional mechanical and friction properties.The results reveal that moderate incorporation(less 6%)of sepiolite provides a particle reinforcement effect,resulting in an improvement of mechanical properties.Interestingly,the addition of sepiolite causes a change in the traditional saddle-shaped friction curve due to high temperature lubrication.Meanwhile,the primary advantage of sepiolite lies in its superior abrasion resistance,evident in the increased friction coefficient and altered wear mechanisms with higher sepiolite content.The wear resistance is optimal at 200 Km/h(400℃).Particularly,the unique composition of the friction layer(outermost layer:a composite film consisting of B2O3,sepiolite,graphite,and metal oxide films;intermediate layer:metal oxide films)plays a pivotal role in improving friction stability.Finally,there are significant optimizations in the GA algorithm,especially GA-GB model has the best prediction effect on the maximum friction temperature.展开更多
基金the National Natural Science Foundation of China (Nos. 52388102, 52072317 and U2268210)the State Key Laboratory of Rail Transit Vehicle System (No. 2024RVL-T12)
文摘Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
基金the National Key Research and Development Program of China(Grant No.2021YFB3703803)National Natural Science Foundation of China(Grant No.52075555)for their financial support.
文摘To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabrication of samples with exceptional mechanical and friction properties.The results reveal that moderate incorporation(less 6%)of sepiolite provides a particle reinforcement effect,resulting in an improvement of mechanical properties.Interestingly,the addition of sepiolite causes a change in the traditional saddle-shaped friction curve due to high temperature lubrication.Meanwhile,the primary advantage of sepiolite lies in its superior abrasion resistance,evident in the increased friction coefficient and altered wear mechanisms with higher sepiolite content.The wear resistance is optimal at 200 Km/h(400℃).Particularly,the unique composition of the friction layer(outermost layer:a composite film consisting of B2O3,sepiolite,graphite,and metal oxide films;intermediate layer:metal oxide films)plays a pivotal role in improving friction stability.Finally,there are significant optimizations in the GA algorithm,especially GA-GB model has the best prediction effect on the maximum friction temperature.