The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and importa...The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.展开更多
The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achie...The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps.展开更多
The cavitation is very common in a centrifugal pump,especially when the speed is very high,and it seriously influences the centrifugal pump performance.In this investigation,the RNG k-ε turbulence model and the cavit...The cavitation is very common in a centrifugal pump,especially when the speed is very high,and it seriously influences the centrifugal pump performance.In this investigation,the RNG k-ε turbulence model and the cavitation model with consideration of the mass transferring are first used to simulate the cavitation performance of the high-speed centrifugal pump without taking any measure for improving the pump cavitation performance.The calculation results reveal that a number of bubbles appear in the centrifugal pump flow channel,and the head as well as the flow rate of the high-speed centrifugal pump are far from its design condition.The cavitation performance can be improved effectively by arranging a variable pitch inducer and adopting an annular nozzle scheme.The flow field analysis of the pump is conducted to obtain the suitable working temperature distribution at different void fractions.On one hand,with the same void fraction,the head of the centrifugal pump drops slowly with the increase of temperature.However,when the temperature exceeds 90°C,the head of the pump drops rapidly.On the other hand,at the constant temperature,the higher the void fraction,the worse the cavitation performance.This research conducted under different temperatures and void fractions provides some guidance for designing an effective high-speed centrifugal pump.展开更多
This paper studies the attached sheet cavitation in centrifugal pumps. A pump casted from Perspex is used as the test subject. The cavitation bubbles were observed in the entrance of the impeller and the drops of the ...This paper studies the attached sheet cavitation in centrifugal pumps. A pump casted from Perspex is used as the test subject. The cavitation bubbles were observed in the entrance of the impeller and the drops of the head coefficients were measured under different operating conditions. A Filter-Based Model (FBM), derived from the RNG k-e model, and a modified Zwart model are adopted in the numerical predictions of the unsteady cavitating flows in the pump. The simulations are carded out and the results are compared with experimental results for 3 different flow coefficients, from 0.077 to 0.114. Under four operating conditions, qualitative comparisons are made between experimental and numerical cavitation patterns, as visualized by a high-speed camera and described as isosurfaces of the vapour volume fraction ctv = 0.1. It is shown that the simulation can truly represent the development of the attached sheet cavitation in the impeller. At the same time, the curves for the drops of the head coefficients obtained from experiments and calculations are also quantitatively compared, which shows that the decline of the head coefficients at every flow coefficient is correctly captured, and the prediction accuracy is high. In addition, the detailed analysis is made on the vapour volume fraction contours on the plane of span is 0.5 and the loading distributions around the blade section at the midspan. It is shown that the FBM model and the modified Zwart model are effective for the numerical simulation of the cavitating flow in centrifugal pumps. The analysis results can also be used as the basis for the further research of the attached sheet cavitation and the improvement of centrifugal pumps.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 51279069,51109093)Jiangsu Provincial Natural Science Foundation of China (Grant Nos. BK2011503,BK2011505)
文摘The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.
基金This project is supported by National Natural Science Foundation of China (No.50105018) and Provincial Natural Science Foundation of Zhejiang of China (No.501119).
文摘The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps.
基金the National Natural Science Foundation of China (Grant No.51279145).
文摘The cavitation is very common in a centrifugal pump,especially when the speed is very high,and it seriously influences the centrifugal pump performance.In this investigation,the RNG k-ε turbulence model and the cavitation model with consideration of the mass transferring are first used to simulate the cavitation performance of the high-speed centrifugal pump without taking any measure for improving the pump cavitation performance.The calculation results reveal that a number of bubbles appear in the centrifugal pump flow channel,and the head as well as the flow rate of the high-speed centrifugal pump are far from its design condition.The cavitation performance can be improved effectively by arranging a variable pitch inducer and adopting an annular nozzle scheme.The flow field analysis of the pump is conducted to obtain the suitable working temperature distribution at different void fractions.On one hand,with the same void fraction,the head of the centrifugal pump drops slowly with the increase of temperature.However,when the temperature exceeds 90°C,the head of the pump drops rapidly.On the other hand,at the constant temperature,the higher the void fraction,the worse the cavitation performance.This research conducted under different temperatures and void fractions provides some guidance for designing an effective high-speed centrifugal pump.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (Grant No. 50825902)the Natural Science Foundation of Jiangsu Province (Grant Nos.51239005, 51179075)
文摘This paper studies the attached sheet cavitation in centrifugal pumps. A pump casted from Perspex is used as the test subject. The cavitation bubbles were observed in the entrance of the impeller and the drops of the head coefficients were measured under different operating conditions. A Filter-Based Model (FBM), derived from the RNG k-e model, and a modified Zwart model are adopted in the numerical predictions of the unsteady cavitating flows in the pump. The simulations are carded out and the results are compared with experimental results for 3 different flow coefficients, from 0.077 to 0.114. Under four operating conditions, qualitative comparisons are made between experimental and numerical cavitation patterns, as visualized by a high-speed camera and described as isosurfaces of the vapour volume fraction ctv = 0.1. It is shown that the simulation can truly represent the development of the attached sheet cavitation in the impeller. At the same time, the curves for the drops of the head coefficients obtained from experiments and calculations are also quantitatively compared, which shows that the decline of the head coefficients at every flow coefficient is correctly captured, and the prediction accuracy is high. In addition, the detailed analysis is made on the vapour volume fraction contours on the plane of span is 0.5 and the loading distributions around the blade section at the midspan. It is shown that the FBM model and the modified Zwart model are effective for the numerical simulation of the cavitating flow in centrifugal pumps. The analysis results can also be used as the basis for the further research of the attached sheet cavitation and the improvement of centrifugal pumps.