Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to meas...Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains.展开更多
As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the di...As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.展开更多
High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in...High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in detail the relationship between the bearing temperature and influencing factors.In this study,a dynamics model of the axle box bearing of high-speed trains is established.The model can obtain the contact force between the rollers and raceway and its change law when the bearing contains outer-ring,inner-ring,and rolling-element faults.Based on the model,a thermal network method is introduced to study the temperature field distribution of the axle box bearings of high-speed trains.In this model,the heat generation,conduction,and dispersion of the isothermal nodes can be solved.The results show that the temperature of the contact point between the outer-ring raceway and rolling-elements is the highest.The relationships between the node temperature and the speed,fault type,and fault size are analyzed,finding that the higher the speed,the higher the node temperature.Under different fault types,the node temperature first increases and then decreases as the fault size increases.The effectiveness of the model is demonstrated using the actual temperature data of a high-speed train.This study proposes a thermal network model that can predict the temperature of each component of the bearings on a high-speed train under various speed and fault conditions.展开更多
1Overview of the CR Fuxing high-speed EMUseries The independently developed CR(China Railways)Fuxing high-speed EMU(electric multiple unit)series by China currently comprises three speed-level product series:CR400,CR3...1Overview of the CR Fuxing high-speed EMUseries The independently developed CR(China Railways)Fuxing high-speed EMU(electric multiple unit)series by China currently comprises three speed-level product series:CR400,CR300,and CR200,as shown in Fig.1.The EMUs demonstrate adaptability to various geographical and climatic conditions,including high plateaus,extremely cold regions,strong wind and sandy environmental conditions,with a designed service life of 30 years.The 350 km/h speed level of the CR-Fuxing series primarily consists of two platforms,namely CR400AF and CR400BF,both of them are electric multiple units with distributed power.Each 8-car formation is configured with a 4M4T arrangement,divided into two traction units(Tc+M+Tp+M).展开更多
When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the...When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data.展开更多
The microstructure,precipitates and properties of 25CrNiMoV(DZ2)steel for high-speed railway axles with different Nb contents were investigated by means of optical microscopy,scanning electron microscopy,electron back...The microstructure,precipitates and properties of 25CrNiMoV(DZ2)steel for high-speed railway axles with different Nb contents were investigated by means of optical microscopy,scanning electron microscopy,electron back-scattering diffraction,transmission electron microscopy and physicochemical phase analysis.The results show that the grain size of the original austenite of the test steels decreases from 20.5 to 14.2 and 10.8μm after adding 0.026 and 0.039 wt.%Nb to a 25CrNiMoV steel,respectively.Moreover,the block width of the tempered martensite in the test steels is refined from 1.91 to 1.72 and 1.60µm,respectively.MC-type precipitates in 25CrNiMoV steel are mainly VC,while(Nb,V)C gradually precipitates when Nb is microalloyed,and the amount of precipitates increases with increasing Nb content.Through strengthening mechanism analysis,it is found that grain refinement strengthening is the primary way to increase the strength.The improvement in the yield strength with increasing Nb content is attributed to a significant increase in precipitation strengthening,grain refinement strengthening and dislocation strengthening.展开更多
The autotransformer(AT)neutral current ratio method is widely used for fault location in the AT traction power network.With the development of high-speed electrified railways,a large number of data show that the relat...The autotransformer(AT)neutral current ratio method is widely used for fault location in the AT traction power network.With the development of high-speed electrified railways,a large number of data show that the relation between the AT neutral current ratio and the distance from the beginning of the fault AT section to the fault point(Q-L relation)is mostly nonlinear.Therefore,the linear Q-L relation in the traditional fault location method always leads to large errors.To solve this problem,a large number of load-related current data that can be used to describe the Q-L relation are obtained through the load test of the electric multiple unit(EMU).Thus,an improved fault location method based on the back propagation(BP)neural network is proposed in this paper.On this basis,a comparison between the improved method and the traditional method shows that the maximum absolute error and the average absolute error of the improved method are 0.651 km and 0.334 km lower than those of the traditional method,respectively,which demonstrates that the improved method can effectively eliminate the influence of nonlinear factors and greatly improve the accuracy of fault location for the AT traction power network.Finally,combined with a shortcircuit test,the accuracy of the improved method is verified.展开更多
基金the Sichuan Science and Technology Program of China(No.2024NSFSC0160).
文摘Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains.
基金supported by the National Natural Science Foundation of China(52075032)the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.(K2022J023).
文摘As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.
基金National Key R&D Program(Grant No.2020YFB2007700),National Natural Science Foundation of China(Grant Nos.11790282,12032017,12002221 and 11872256)S&T Program of Hebei(Grant No.20310803D)+1 种基金Natural Science Foundation of Hebei Province(Grant No.A2020210028)State Foundation for Studying Abroad.
文摘High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in detail the relationship between the bearing temperature and influencing factors.In this study,a dynamics model of the axle box bearing of high-speed trains is established.The model can obtain the contact force between the rollers and raceway and its change law when the bearing contains outer-ring,inner-ring,and rolling-element faults.Based on the model,a thermal network method is introduced to study the temperature field distribution of the axle box bearings of high-speed trains.In this model,the heat generation,conduction,and dispersion of the isothermal nodes can be solved.The results show that the temperature of the contact point between the outer-ring raceway and rolling-elements is the highest.The relationships between the node temperature and the speed,fault type,and fault size are analyzed,finding that the higher the speed,the higher the node temperature.Under different fault types,the node temperature first increases and then decreases as the fault size increases.The effectiveness of the model is demonstrated using the actual temperature data of a high-speed train.This study proposes a thermal network model that can predict the temperature of each component of the bearings on a high-speed train under various speed and fault conditions.
文摘1Overview of the CR Fuxing high-speed EMUseries The independently developed CR(China Railways)Fuxing high-speed EMU(electric multiple unit)series by China currently comprises three speed-level product series:CR400,CR300,and CR200,as shown in Fig.1.The EMUs demonstrate adaptability to various geographical and climatic conditions,including high plateaus,extremely cold regions,strong wind and sandy environmental conditions,with a designed service life of 30 years.The 350 km/h speed level of the CR-Fuxing series primarily consists of two platforms,namely CR400AF and CR400BF,both of them are electric multiple units with distributed power.Each 8-car formation is configured with a 4M4T arrangement,divided into two traction units(Tc+M+Tp+M).
基金supported by the National Natural Science Foundation of China(U1134201 and 51175032)the National Hitech Research and Development Program of China(973 Program)(211CD71104)
文摘When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data.
基金supported by National Key R&D Program of China(No.2017YFB0304600).
文摘The microstructure,precipitates and properties of 25CrNiMoV(DZ2)steel for high-speed railway axles with different Nb contents were investigated by means of optical microscopy,scanning electron microscopy,electron back-scattering diffraction,transmission electron microscopy and physicochemical phase analysis.The results show that the grain size of the original austenite of the test steels decreases from 20.5 to 14.2 and 10.8μm after adding 0.026 and 0.039 wt.%Nb to a 25CrNiMoV steel,respectively.Moreover,the block width of the tempered martensite in the test steels is refined from 1.91 to 1.72 and 1.60µm,respectively.MC-type precipitates in 25CrNiMoV steel are mainly VC,while(Nb,V)C gradually precipitates when Nb is microalloyed,and the amount of precipitates increases with increasing Nb content.Through strengthening mechanism analysis,it is found that grain refinement strengthening is the primary way to increase the strength.The improvement in the yield strength with increasing Nb content is attributed to a significant increase in precipitation strengthening,grain refinement strengthening and dislocation strengthening.
基金supported by the National Key Research and Development Program of China(No.2021YFB2601500)the Natural Science Foundation of Sichuan Province(No.2022NSFSC0405)。
文摘The autotransformer(AT)neutral current ratio method is widely used for fault location in the AT traction power network.With the development of high-speed electrified railways,a large number of data show that the relation between the AT neutral current ratio and the distance from the beginning of the fault AT section to the fault point(Q-L relation)is mostly nonlinear.Therefore,the linear Q-L relation in the traditional fault location method always leads to large errors.To solve this problem,a large number of load-related current data that can be used to describe the Q-L relation are obtained through the load test of the electric multiple unit(EMU).Thus,an improved fault location method based on the back propagation(BP)neural network is proposed in this paper.On this basis,a comparison between the improved method and the traditional method shows that the maximum absolute error and the average absolute error of the improved method are 0.651 km and 0.334 km lower than those of the traditional method,respectively,which demonstrates that the improved method can effectively eliminate the influence of nonlinear factors and greatly improve the accuracy of fault location for the AT traction power network.Finally,combined with a shortcircuit test,the accuracy of the improved method is verified.