Bearing support position is one of main factors affecting vibration characteristics of rotor systems. To optimize the bearing support positions in a high-speed flexible rotor system (HSFRS) based on the vibration char...Bearing support position is one of main factors affecting vibration characteristics of rotor systems. To optimize the bearing support positions in a high-speed flexible rotor system (HSFRS) based on the vibration characteristics, an optimization method of bearing support positions in the HSFRS is proposed. In this method, a finite element (FE) model of a high-speed flexible rotor (HSFR) was established. The natural frequencies and mode shapes of the HSFRS were used to obtain the initial design scheme of the bearing support positions. A frequency characteristic equation of the HSFRS was established to obtain the critical speeds of the HSFRS. And a dynamic model of the HSFRS was established to analyze the vibration characteristics for different bearing support position cases. The problem of optimizing bearing support positions in the HSFRS was solved by the developed method. The results showed that vibration amplitudes of the HSFRS were more stable when the bearing support positions were optimized. This study can provide a new method for optimizing bearing support positions of rotor systems.展开更多
To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics...To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics are analyzed and a friction damper is designed. The effect on an unbalanced response is studied. Results show that the stiffness factor and the friction-damping factor of the damper are related to the cone angle and the friction factor of the inner-ring when adopting a proper structure. By changing these parameters and the Z-directional stiffness of the outer-ring, the stiffness and the damping characteristic of the damper can be varied. Introducing a friction damper into the support can reduce the stiffness and increase the damping of the support, thus decreasing the critical speed to avoid the operating speed, suppress the resonant response of a rotor system, and attenuate vibration forces to the outside.展开更多
The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount o...The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.展开更多
This work deals with a finite element procedure developed to perform the eigenvalue analysis of damped gyroscopic systems, represented by flexible rotors supported on fluid film journal bearings. The rotor finite elem...This work deals with a finite element procedure developed to perform the eigenvalue analysis of damped gyroscopic systems, represented by flexible rotors supported on fluid film journal bearings. The rotor finite element model is based on the Timoshenko beam theory, accounting for the shaft rotary inertia and gyroscopic moments. The governing equations for the hydrodynamic journal bearing are obtained through the Galerkin weighted residual method applied to the classical Reynolds equation. A perturbation scheme on the fluid film governing equation permits to obtain the zero-th and first order lubrication equations for the bearings, which allow the computation of the dynamic force coefficients associated with the bearing stiffness and damping. The rotor-bearing system equation, which consists of a case of damped gyroscopic equation, is rewritten on state form to compute the complex eigenvalues. The natural frequencies at several operating conditions are obtained and compared to the technical literature data. The influence of the effective damping on the eigenvalue real part sign is analyzed for some examples of rotor-bearing systems, showing how the stability conditions can be predicted by the eigenvalue analysis. The procedure implemented in this work can provide useful guidelines and technical data about the selection of the more appropriate set of bearing parameters for rotating machines operating at stringent conditions.展开更多
A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, inter...A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, interference force of different frequencies and staticload, as opposed to previous research. On the basis of this model, the optimal design of the systemis deeply studied. Simulation shows that the system optimization design can effectively improve thesystem stability.展开更多
A new technique so-called finite modes condensation based on modal analysis is presented to simplify a long and complicated rotor system with distributed mass into a simplified rotor model with adjustablenumber of deg...A new technique so-called finite modes condensation based on modal analysis is presented to simplify a long and complicated rotor system with distributed mass into a simplified rotor model with adjustablenumber of degrees of freedom. By means of this new method, a practical example study shows that it can bedone to calculate transient response for any cross-section of a flexible rotor with enough accuracy during itsdrop in case that there exist several active magnetic bearings and traditional bearings.展开更多
A Large balancing weight may be obtained by calculation, when the ordinary influence coefficient method is used. In this paper, a new residual value balance method is recommended. The fundamental idea of the new metho...A Large balancing weight may be obtained by calculation, when the ordinary influence coefficient method is used. In this paper, a new residual value balance method is recommended. The fundamental idea of the new method is on the principle of getting the minimized weight on condition that the vibration values at various points are less than the admitted ones. Experimental results show that this method is effective for balancing the insensitive rotor and rotors with special dynamic characteristics.展开更多
As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexibl...As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexible beam should satisfy both the strength and dynamic requirements.However,traditional optimization research focused only on either the strength or dynamical characteristics.To sufficiently improve the performance of the flexible beam,both aspects must be considered.This paper proposes a two-stage optimization method based on the Hamilton variational principle:Variational asymptotic beam section analysis(VABS)program and genetic algorithm(GA).Consequently,a two-part analysis model based on the Hamilton variational principle and VABS is established to calculate section characteristics and structural dynamics characteristics,respectively.Subsequently,the two parts are combined to establish a two-stage optimization process and search with GA to obtain the best dynamic characteristics combinations.Based on the primary optimization results,the section characteristics of the flexible beam are further optimized using GA.The optimization results show that the torsional stiffness decreases by 36.1%compared with the full 0°laying scheme without optimization and the dynamic requirements are achieved.The natural frequencies of flapping and torsion meet the requirements(0.5 away from the passing frequencies of the blade,0.25 away from the excitation force frequency,and the flapping and torsion frequencies keep a corresponding distance).The results indicate that the optimization method can significantly improve the performance of the flexible beam.展开更多
To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given...To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given out and the transition process from the helicopter mode to the airplane mode is designed. The lift system consists of a circular disk-wing with four retractable blades. The technology of individual blade control is adopted for flight control in hover and low speed flight. The tail is a vectored thrust duct propeller. It can provide the anti-torque in hover, and offer the multi-directional controls and propulsion drive for the airplane mode flight. The aerodynamic characteristics and key technologies in the transition process for this layout, including the nose up angle of disk-wing, the length of the blade, rotation speed, pitch angle and other parameters, are theoretically ana lyzed and experimentally tested. Calculation and experiments show that the shift process of the lift, the power and controls are smooth, and the designed scheme is feasible.展开更多
The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of ...The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of machinery, the gap between the active and passive parts of the rotor system become smaller, which results in the common rubbing fault of rotors and stators. This essay studies the fault diagnosis of high speed rotors based on invented instrument and shows the measurement and research of the signals of rubbing failure of high speed rotors. The research introduces the designed software and hardware which are experimented and testified on Bentley rotor experiment platform. The system has theoretical and applicative meaning in practical projects.展开更多
When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the...When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data.展开更多
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel...The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.展开更多
In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the ac...In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
Track utilization is the most important technical operation in high-speed railway stations.It is an effective way to take flexible man-agement based on dispatchers’decision preferences into consideration for making t...Track utilization is the most important technical operation in high-speed railway stations.It is an effective way to take flexible man-agement based on dispatchers’decision preferences into consideration for making track utilization plans to relieve the influence caused by unmeasurable unstructured factors.Thus,based on the flexible management concept and taking the flexible optimal for track utilization in high-speed railway stations as the object,time and space occupation safety trajectories of arrival routes,departure routes and tracks are all analysed.Then,taking the following constraints into consideration-minimum safety time intervals for var-ious routes and tracks occupation,space-time arc occupation and decision-makers’preferences-a flexible optimal model for track utilization in high-speed railway stations is established to maximize its balance and robustness and to minimize its volatility at the same time.Further,a flexible optimal solution based on a simulated annealing algorithm is designed to make a safety track utilization plan in high-speed railway stations integrating the dispatchers’decision preference.The results from the experiments show that the proposed methodology can effectively make satisfied safety track utilization plans based on decision-makers’preferences,which can improve its balance and robustness level significantly.Meanwhile,its volatility can be reduced as much as possible caused by flexible management based on artificial intervention to ensure the relative stability of the plan.展开更多
基金National Natural Science Foundation of China (No. 51975068)。
文摘Bearing support position is one of main factors affecting vibration characteristics of rotor systems. To optimize the bearing support positions in a high-speed flexible rotor system (HSFRS) based on the vibration characteristics, an optimization method of bearing support positions in the HSFRS is proposed. In this method, a finite element (FE) model of a high-speed flexible rotor (HSFR) was established. The natural frequencies and mode shapes of the HSFRS were used to obtain the initial design scheme of the bearing support positions. A frequency characteristic equation of the HSFRS was established to obtain the critical speeds of the HSFRS. And a dynamic model of the HSFRS was established to analyze the vibration characteristics for different bearing support position cases. The problem of optimizing bearing support positions in the HSFRS was solved by the developed method. The results showed that vibration amplitudes of the HSFRS were more stable when the bearing support positions were optimized. This study can provide a new method for optimizing bearing support positions of rotor systems.
文摘To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics are analyzed and a friction damper is designed. The effect on an unbalanced response is studied. Results show that the stiffness factor and the friction-damping factor of the damper are related to the cone angle and the friction factor of the inner-ring when adopting a proper structure. By changing these parameters and the Z-directional stiffness of the outer-ring, the stiffness and the damping characteristic of the damper can be varied. Introducing a friction damper into the support can reduce the stiffness and increase the damping of the support, thus decreasing the critical speed to avoid the operating speed, suppress the resonant response of a rotor system, and attenuate vibration forces to the outside.
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. ZJG0704)
文摘The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.
文摘This work deals with a finite element procedure developed to perform the eigenvalue analysis of damped gyroscopic systems, represented by flexible rotors supported on fluid film journal bearings. The rotor finite element model is based on the Timoshenko beam theory, accounting for the shaft rotary inertia and gyroscopic moments. The governing equations for the hydrodynamic journal bearing are obtained through the Galerkin weighted residual method applied to the classical Reynolds equation. A perturbation scheme on the fluid film governing equation permits to obtain the zero-th and first order lubrication equations for the bearings, which allow the computation of the dynamic force coefficients associated with the bearing stiffness and damping. The rotor-bearing system equation, which consists of a case of damped gyroscopic equation, is rewritten on state form to compute the complex eigenvalues. The natural frequencies at several operating conditions are obtained and compared to the technical literature data. The influence of the effective damping on the eigenvalue real part sign is analyzed for some examples of rotor-bearing systems, showing how the stability conditions can be predicted by the eigenvalue analysis. The procedure implemented in this work can provide useful guidelines and technical data about the selection of the more appropriate set of bearing parameters for rotating machines operating at stringent conditions.
文摘A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, interference force of different frequencies and staticload, as opposed to previous research. On the basis of this model, the optimal design of the systemis deeply studied. Simulation shows that the system optimization design can effectively improve thesystem stability.
文摘A new technique so-called finite modes condensation based on modal analysis is presented to simplify a long and complicated rotor system with distributed mass into a simplified rotor model with adjustablenumber of degrees of freedom. By means of this new method, a practical example study shows that it can bedone to calculate transient response for any cross-section of a flexible rotor with enough accuracy during itsdrop in case that there exist several active magnetic bearings and traditional bearings.
文摘A Large balancing weight may be obtained by calculation, when the ordinary influence coefficient method is used. In this paper, a new residual value balance method is recommended. The fundamental idea of the new method is on the principle of getting the minimized weight on condition that the vibration values at various points are less than the admitted ones. Experimental results show that this method is effective for balancing the insensitive rotor and rotors with special dynamic characteristics.
基金supported by the Foundation of National Key Laboratory of Rotorcraft Aeromechanics,Nanjing University of Aeronautics and Astronautics(No.614222004030917)。
文摘As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexible beam should satisfy both the strength and dynamic requirements.However,traditional optimization research focused only on either the strength or dynamical characteristics.To sufficiently improve the performance of the flexible beam,both aspects must be considered.This paper proposes a two-stage optimization method based on the Hamilton variational principle:Variational asymptotic beam section analysis(VABS)program and genetic algorithm(GA).Consequently,a two-part analysis model based on the Hamilton variational principle and VABS is established to calculate section characteristics and structural dynamics characteristics,respectively.Subsequently,the two parts are combined to establish a two-stage optimization process and search with GA to obtain the best dynamic characteristics combinations.Based on the primary optimization results,the section characteristics of the flexible beam are further optimized using GA.The optimization results show that the torsional stiffness decreases by 36.1%compared with the full 0°laying scheme without optimization and the dynamic requirements are achieved.The natural frequencies of flapping and torsion meet the requirements(0.5 away from the passing frequencies of the blade,0.25 away from the excitation force frequency,and the flapping and torsion frequencies keep a corresponding distance).The results indicate that the optimization method can significantly improve the performance of the flexible beam.
文摘To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given out and the transition process from the helicopter mode to the airplane mode is designed. The lift system consists of a circular disk-wing with four retractable blades. The technology of individual blade control is adopted for flight control in hover and low speed flight. The tail is a vectored thrust duct propeller. It can provide the anti-torque in hover, and offer the multi-directional controls and propulsion drive for the airplane mode flight. The aerodynamic characteristics and key technologies in the transition process for this layout, including the nose up angle of disk-wing, the length of the blade, rotation speed, pitch angle and other parameters, are theoretically ana lyzed and experimentally tested. Calculation and experiments show that the shift process of the lift, the power and controls are smooth, and the designed scheme is feasible.
基金supported by the Education and Teaching Research Project of Jieyang Vocational and Technical College(JYC2016Y11)
文摘The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of machinery, the gap between the active and passive parts of the rotor system become smaller, which results in the common rubbing fault of rotors and stators. This essay studies the fault diagnosis of high speed rotors based on invented instrument and shows the measurement and research of the signals of rubbing failure of high speed rotors. The research introduces the designed software and hardware which are experimented and testified on Bentley rotor experiment platform. The system has theoretical and applicative meaning in practical projects.
基金supported by the National Natural Science Foundation of China(U1134201 and 51175032)the National Hitech Research and Development Program of China(973 Program)(211CD71104)
文摘When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data.
基金supported by the National Basic Research Program of China (Grant 2011CB711103)the National Natural Science Foundation of China (Grants U1134202,U1361117)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT1178)the 2014 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities
文摘The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.
基金the support of the National Natural Science Foundation of China (No. 51005189)the National Key Technology R&D Program of China (2009BAG12A01)
文摘In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.
基金This research is supported by the Natural Science Foundation of China(Grants No.71971220 and 71901093)Hunan Provincial Natural Science Foundation of China(Grants No.2023JJ30710 and 2022JJ31020).
文摘Track utilization is the most important technical operation in high-speed railway stations.It is an effective way to take flexible man-agement based on dispatchers’decision preferences into consideration for making track utilization plans to relieve the influence caused by unmeasurable unstructured factors.Thus,based on the flexible management concept and taking the flexible optimal for track utilization in high-speed railway stations as the object,time and space occupation safety trajectories of arrival routes,departure routes and tracks are all analysed.Then,taking the following constraints into consideration-minimum safety time intervals for var-ious routes and tracks occupation,space-time arc occupation and decision-makers’preferences-a flexible optimal model for track utilization in high-speed railway stations is established to maximize its balance and robustness and to minimize its volatility at the same time.Further,a flexible optimal solution based on a simulated annealing algorithm is designed to make a safety track utilization plan in high-speed railway stations integrating the dispatchers’decision preference.The results from the experiments show that the proposed methodology can effectively make satisfied safety track utilization plans based on decision-makers’preferences,which can improve its balance and robustness level significantly.Meanwhile,its volatility can be reduced as much as possible caused by flexible management based on artificial intervention to ensure the relative stability of the plan.