To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different ...To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.展开更多
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s...Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.展开更多
In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic eff...In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed,the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward,and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.展开更多
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha...A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.展开更多
The Yinggehai Basin is a strongly overpressured Cenozoic basin developed in the northern continental shelf of the South China Sea. The flow of overpressured fluids in this basin has given rise to strong effects on pet...The Yinggehai Basin is a strongly overpressured Cenozoic basin developed in the northern continental shelf of the South China Sea. The flow of overpressured fluids in this basin has given rise to strong effects on petroleum accumulation. (1) The overpressured fluid flow has enhanced the maturation of shallow-buried source rocks, which has caused the source rocks that would have remained immature under the conduction background to be mature for hydrocarbon generation. As a result, the overpressured fluid flow has increased the volume and interval of mature source rocks. (2) The overpressured fluid flow has strong extraction effects on the immature or low-mature source rocks in the shallow parts. This has increased, to some extent, the expulsion efficiency of the source rocks. More importantly, the extraction effects have strongly limited the effectiveness of biomarker parameters from oil and condensate in reflecting the source and maturity of the oil and gas. (3) The flow has caused the sandstones in the shallow parts to get into the late diagenesis stage, and significantly reduced the porosity and permeability of the sandstones. This study confirms that even in sedimentary basins in which no topography-driven groundwater flow systems have ever developed, the cross-formation migration of overpressured fluids and the resultant energy conduction and material exchange can significantly affect the thermal regime, source rock maturation and sandstone diagenesis. As a result, the effects of overpressured fluid flow must be taken into account in analyzing the mechanism of petroleum accumulation.展开更多
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is invest...The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.展开更多
Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole ...Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole Stoneley wave and dipole flexural wave prop- agating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method. The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed. The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant. The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction. The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress, the superimposed stress and the fluid static pressure. The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy. This makes the intersection of flexural wave dispersion curves not distinguishable. The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.展开更多
The temperature distributions of different parts of a subgrade were analyzed based on the results of three years of moni- toring data from the Harbin-Qiqihaer Passenger Dedicated Line, a high-speed railway, including ...The temperature distributions of different parts of a subgrade were analyzed based on the results of three years of moni- toring data from the Harbin-Qiqihaer Passenger Dedicated Line, a high-speed railway, including the slope toes, shoulders, and natural ground. The temperature variation with time and the maximum frozen depths showed that an obvious sun- ny-shady effect exists in the railway subgrade, which spans a seasonal frozen region. Development of frost heave is af- fected by the asymmetric temperature distribution. The temperature field and the maximum frozen depths 50 years after the subgrade was built were simulated with a mathematical model of the unsteady phase transition of the geothermal field.展开更多
Based on analyses of the spatio-temporal evolutionary characteristics of teleseismic response recorded by Fujian subsurface fluid network and in combination with earthquakes happened in Fujian province during the same...Based on analyses of the spatio-temporal evolutionary characteristics of teleseismic response recorded by Fujian subsurface fluid network and in combination with earthquakes happened in Fujian province during the same period, this paper points out that the step-like rising of water level after distant earthquakes may include some regional stress field information, and the area where water level step-like rises could be the position that the stress concentrated on and where the future earthquakes would occur. If combined with other impending precursors, the location of the events may be predicted to a certain degree.展开更多
During well drilling process,original stress state of hard brittle shale will be changed due to stress redistribution and concentration,which leads to stress damage phenomenon around the borehole.Consequently,drilling...During well drilling process,original stress state of hard brittle shale will be changed due to stress redistribution and concentration,which leads to stress damage phenomenon around the borehole.Consequently,drilling fluid will invade into formation along the tiny cracks induced by stress damage,and then weaken the strength of hard brittle shale.Based on this problem,a theoretical model was set up to discuss damage level of shale under uniaxial compression tests using acoustic velocity data.And specifically,considering the coupled effect of stress damage and drilling fluid,the relationship between hard brittle shale strength and elapsed time was analyzed.展开更多
A new model is proposed for determining the band gaps of flexural wave propagation in periodic fluid-filled micropipes with circular and square thin-wall cross-sectional shapes, which incorporates temperature, microst...A new model is proposed for determining the band gaps of flexural wave propagation in periodic fluid-filled micropipes with circular and square thin-wall cross-sectional shapes, which incorporates temperature, microstructure, and surface energy effects. The band gaps depend on the thin-wall cross-sectional shape, the microstructure and surface elastic material constants, the pipe wall thickness, the unit cell length, the volume fraction, the fluid velocity in the pipe, the temperature change,and the thermal expansion coefficient. A systematic parametric study is conducted to quantitatively illustrate these factors. The numerical results show that the band gap frequencies of the current non-classical model with both circular and square thin-wall cross-sectional shapes are always higher than those of the classical model. In addition,the band gap size and frequency decrease with the increase of the unit cell length according to all the cases. Moreover, the large band gaps can be obtained by tailoring these factors.展开更多
It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the ...It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.展开更多
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing...The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically展开更多
Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not bee...Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments.展开更多
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
Heat carried by deep fluid might greatly affect hydrocarbon generation and pore space in shale.Dyke intrusion carrying high levels of heat may be a means by which to explore the influence of deep fluid on shale reserv...Heat carried by deep fluid might greatly affect hydrocarbon generation and pore space in shale.Dyke intrusion carrying high levels of heat may be a means by which to explore the influence of deep fluid on shale reservoirs.This study evaluates hydrocarbon generation and analyzed the evolution of shale storage space in the third member of the Xiamaling Formation in the Zhaojiashan section,Hebei Province,based on experimental data such as TOC,SEM,VRo,low-temperature N_(2)adsorption and high-pressure mercury injection.The results show that the dyke intrusion reduced the shale TOC content drastically―by up to 77%―and also induced instantaneous hydrocarbon generation over a range about 1.4 times the thickness of the intrusion.Furthermore,the dyke intrusion might transform organic pores in surrounding shales into inorganic pores.There were two shale porosity peaks:one appeared when VRo=2.0%,caused by the increase of organic pores as thermal maturity increased,the other occurred when the VRo value was between 3%and 4%,caused by the increase of inorganic mineral pores.It can be concluded that dyke intrusion can be an effective tool with which to study how deep fluid affects instantaneous hydrocarbon generation and pore space in shale.展开更多
Calculation of the scattered field of the eccentric scatterers is an old problem with numerous applications. This study considers the interaction of a plane compressional sound wave with a liquid-encapsulated thermovi...Calculation of the scattered field of the eccentric scatterers is an old problem with numerous applications. This study considers the interaction of a plane compressional sound wave with a liquid-encapsulated thermoviscous fluid cylinder submerged in an unbounded viscous thermally conducting medium. The translational addition theorem for cylindrical wave functions, the appropriate wave field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which the compound cylinder is insonified by a plane sound wave at selected angles of incidence in a wide range of dimensionless frequencies. The backscattered far-field acoustic pressure amplitude and the spatial distribution of the total acoustic pressure in the vicinity of the cylinder are evaluated and discussed for representative values of the parameters characterizing the system. The effects of incident wave frequency, angle of incidence, fluid thermoviscosity, core eccentricity and size are thoroughly examined. Limiting case involving an ideal com- pressible liquid-coated cylinder is considered and fair agreement with a well-known solution is established.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
There are four types of metamorphic rocks in the Marinwobo fault, i.e, cataclasite, mylonite, mictosite and migmatitic granite, and the formation of these rocks is due to the progressive metamorphism of the pyroclasti...There are four types of metamorphic rocks in the Marinwobo fault, i.e, cataclasite, mylonite, mictosite and migmatitic granite, and the formation of these rocks is due to the progressive metamorphism of the pyroclastics. The fluids play a very important role in the metamorphic process of these rocks in the Marinwobo fault, the most important feature is that the fluids not only result in the migration of the major elements of the deformation rocks, but also result in the volume loss of the deformation rocks in the deformation process. Thus the migration laws of the major elements in different stages of the progressive metamorphic process are discussed according to mass balance equations. Finally, the quantitative analysis of the mass loss and volume loss of the different rocks the in Marinwobo fault is discussed in this paper.展开更多
The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The g...The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The governing partial differential equations are converted into ordinary differential equations by using similarity transformations. These equations are then solved numerically by applying finite difference scheme known as the Keller Box method. The effects of various parameters on velocity, temperature and concentration profiles are presented graphically to interpret and the results are discussed.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2800700)the National Natural Science Foundation of China(Grant Nos.52171330,52101379,52101380,51679053)+2 种基金the Project of Research and Development Plan in Key Areas of Guangdong Province(Grant No.2020B1111010002)the Foundation of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources(Grant No.MESTA-2021-B010)the Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515012134)。
文摘To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.
文摘Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.
基金supported by the National Key Research and Development Program of China(Grant 2016YFB1200602)the National Natural Science Foundation of China (Grants 11672306, 51490673)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22020101)the National Basic Research Program (973 Program) of China (Grant 2014CB046801)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)
文摘In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed,the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward,and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.
基金supported by a Major Programme of the National Science and Technology Support,China Grant(2013BAG24B00),under the project“Key technologies and engineering application demonstration of High-speed train for energy saving”.
文摘A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.
基金This research was supported by the National Natural Science Foundation of China(grants 401 25008 and 40238059).
文摘The Yinggehai Basin is a strongly overpressured Cenozoic basin developed in the northern continental shelf of the South China Sea. The flow of overpressured fluids in this basin has given rise to strong effects on petroleum accumulation. (1) The overpressured fluid flow has enhanced the maturation of shallow-buried source rocks, which has caused the source rocks that would have remained immature under the conduction background to be mature for hydrocarbon generation. As a result, the overpressured fluid flow has increased the volume and interval of mature source rocks. (2) The overpressured fluid flow has strong extraction effects on the immature or low-mature source rocks in the shallow parts. This has increased, to some extent, the expulsion efficiency of the source rocks. More importantly, the extraction effects have strongly limited the effectiveness of biomarker parameters from oil and condensate in reflecting the source and maturity of the oil and gas. (3) The flow has caused the sandstones in the shallow parts to get into the late diagenesis stage, and significantly reduced the porosity and permeability of the sandstones. This study confirms that even in sedimentary basins in which no topography-driven groundwater flow systems have ever developed, the cross-formation migration of overpressured fluids and the resultant energy conduction and material exchange can significantly affect the thermal regime, source rock maturation and sandstone diagenesis. As a result, the effects of overpressured fluid flow must be taken into account in analyzing the mechanism of petroleum accumulation.
文摘The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.
基金The project supported by the National Natural Science Foundation of China(10272004)The Special Science Foundation of the Doctoral Discipline of the Ministry of Education of China(20050001016)
文摘Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole Stoneley wave and dipole flexural wave prop- agating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method. The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed. The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant. The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction. The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress, the superimposed stress and the fluid static pressure. The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy. This makes the intersection of flexural wave dispersion curves not distinguishable. The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.
基金supported by the National Natural Science Foundation of China(Nos.51378057 and 41371081)Scientific and Technological Research and Development Plan of Chinese Railway Corporation(2014G003-A)
文摘The temperature distributions of different parts of a subgrade were analyzed based on the results of three years of moni- toring data from the Harbin-Qiqihaer Passenger Dedicated Line, a high-speed railway, including the slope toes, shoulders, and natural ground. The temperature variation with time and the maximum frozen depths showed that an obvious sun- ny-shady effect exists in the railway subgrade, which spans a seasonal frozen region. Development of frost heave is af- fected by the asymmetric temperature distribution. The temperature field and the maximum frozen depths 50 years after the subgrade was built were simulated with a mathematical model of the unsteady phase transition of the geothermal field.
基金supported jointly by the project from China Earthquake Admini-stration, the Chinese National Science and Technology Program (2006BAC01B02-03-02)the foundation from Administration Earthquake of Fujian province (200801)
文摘Based on analyses of the spatio-temporal evolutionary characteristics of teleseismic response recorded by Fujian subsurface fluid network and in combination with earthquakes happened in Fujian province during the same period, this paper points out that the step-like rising of water level after distant earthquakes may include some regional stress field information, and the area where water level step-like rises could be the position that the stress concentrated on and where the future earthquakes would occur. If combined with other impending precursors, the location of the events may be predicted to a certain degree.
基金Project(U262201)supported by National Natural Science Foundation of China
文摘During well drilling process,original stress state of hard brittle shale will be changed due to stress redistribution and concentration,which leads to stress damage phenomenon around the borehole.Consequently,drilling fluid will invade into formation along the tiny cracks induced by stress damage,and then weaken the strength of hard brittle shale.Based on this problem,a theoretical model was set up to discuss damage level of shale under uniaxial compression tests using acoustic velocity data.And specifically,considering the coupled effect of stress damage and drilling fluid,the relationship between hard brittle shale strength and elapsed time was analyzed.
基金the National Key R&D Program of China(No.2018YFD1100401)the National Natural Science Foundation of China(Nos.12002086,11872149,and 11772091)。
文摘A new model is proposed for determining the band gaps of flexural wave propagation in periodic fluid-filled micropipes with circular and square thin-wall cross-sectional shapes, which incorporates temperature, microstructure, and surface energy effects. The band gaps depend on the thin-wall cross-sectional shape, the microstructure and surface elastic material constants, the pipe wall thickness, the unit cell length, the volume fraction, the fluid velocity in the pipe, the temperature change,and the thermal expansion coefficient. A systematic parametric study is conducted to quantitatively illustrate these factors. The numerical results show that the band gap frequencies of the current non-classical model with both circular and square thin-wall cross-sectional shapes are always higher than those of the classical model. In addition,the band gap size and frequency decrease with the increase of the unit cell length according to all the cases. Moreover, the large band gaps can be obtained by tailoring these factors.
基金the support of Thousand Talents Programthe National Natural Science Foundation of China(51479114)special fund for Marine Renewable Energy Project(GHME2014ZC01)
文摘It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.
文摘The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically
基金financially supported by the National Natural Science Foundation of China(Grant No.52150410427)the Key Support Program for Foreign Experts of the Ministry of Science and Technology of the People's Republic of China(No.wgxz2022057)funding for post-doctoral work by the Department of Human Resources and Social Security of Hubei Province。
文摘Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments.
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
基金funded by the National Key R&D Program(2017YFC060302)the National Natural Science Foundation of China(41872155,41872164 and 42172168)。
文摘Heat carried by deep fluid might greatly affect hydrocarbon generation and pore space in shale.Dyke intrusion carrying high levels of heat may be a means by which to explore the influence of deep fluid on shale reservoirs.This study evaluates hydrocarbon generation and analyzed the evolution of shale storage space in the third member of the Xiamaling Formation in the Zhaojiashan section,Hebei Province,based on experimental data such as TOC,SEM,VRo,low-temperature N_(2)adsorption and high-pressure mercury injection.The results show that the dyke intrusion reduced the shale TOC content drastically―by up to 77%―and also induced instantaneous hydrocarbon generation over a range about 1.4 times the thickness of the intrusion.Furthermore,the dyke intrusion might transform organic pores in surrounding shales into inorganic pores.There were two shale porosity peaks:one appeared when VRo=2.0%,caused by the increase of organic pores as thermal maturity increased,the other occurred when the VRo value was between 3%and 4%,caused by the increase of inorganic mineral pores.It can be concluded that dyke intrusion can be an effective tool with which to study how deep fluid affects instantaneous hydrocarbon generation and pore space in shale.
文摘Calculation of the scattered field of the eccentric scatterers is an old problem with numerous applications. This study considers the interaction of a plane compressional sound wave with a liquid-encapsulated thermoviscous fluid cylinder submerged in an unbounded viscous thermally conducting medium. The translational addition theorem for cylindrical wave functions, the appropriate wave field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which the compound cylinder is insonified by a plane sound wave at selected angles of incidence in a wide range of dimensionless frequencies. The backscattered far-field acoustic pressure amplitude and the spatial distribution of the total acoustic pressure in the vicinity of the cylinder are evaluated and discussed for representative values of the parameters characterizing the system. The effects of incident wave frequency, angle of incidence, fluid thermoviscosity, core eccentricity and size are thoroughly examined. Limiting case involving an ideal com- pressible liquid-coated cylinder is considered and fair agreement with a well-known solution is established.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.
文摘There are four types of metamorphic rocks in the Marinwobo fault, i.e, cataclasite, mylonite, mictosite and migmatitic granite, and the formation of these rocks is due to the progressive metamorphism of the pyroclastics. The fluids play a very important role in the metamorphic process of these rocks in the Marinwobo fault, the most important feature is that the fluids not only result in the migration of the major elements of the deformation rocks, but also result in the volume loss of the deformation rocks in the deformation process. Thus the migration laws of the major elements in different stages of the progressive metamorphic process are discussed according to mass balance equations. Finally, the quantitative analysis of the mass loss and volume loss of the different rocks the in Marinwobo fault is discussed in this paper.
文摘The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The governing partial differential equations are converted into ordinary differential equations by using similarity transformations. These equations are then solved numerically by applying finite difference scheme known as the Keller Box method. The effects of various parameters on velocity, temperature and concentration profiles are presented graphically to interpret and the results are discussed.