In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of sp...In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.展开更多
In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite...In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite element analysis software by field test.The dynamic response and stability of loess hills under two different vibration sources under high-speed train load were studied by using two-dimensional equivalent linear response timehistory analysis,and the influence of the mechanical parameters of loess on the vibration of different types of loess hill was analyzed.Results show that there are obvious differences between peak displacement cloud maps of loess hills under the railway viaduct under gravity and train load action.We analyzed the influence of the change of elastic modulus on vibration propagation of soil of foundation and loess knoll,and found that the change of elastic modulus of soil in different position of foundation has more effect on vibration propagation than that of loess knoll soil.At the same time,the vertical acceleration cloud maps of the four types of loess hills are obviously different.展开更多
The design live load of railway is divided into common railway and high-speed railway separately inKorea. Accordingly, the Korean design specification of railway specifies the impact factor for common railway and high...The design live load of railway is divided into common railway and high-speed railway separately inKorea. Accordingly, the Korean design specification of railway specifies the impact factor for common railway and high-speed railway respectively. The impact factor for high-speed railway is based on Eurocode. Since the impact factor criteria inKoreawere established by adopting those of the Eurocode and without dedicated investigation relying on research results reflecting the domestic circumstances, thorough examination should be implemented on these criteria. Therefore the evaluation of impact factor based on field tests is required. Both dynamic and static vertical displacements are necessary to compute the impact factor. The dynamic response can be obtained from the measurement of deflection of the bridge slab crossed by the firstKoreahigh-speed train (KTX, Korea Train eXpress) running at high-speed. The main difficulties encountered are in obtaining static response because static response corresponds to the response of the bridge when the train remains immobile on the bridge or crosses the bridge at speed slower than5 km/hr. This study introduces the static response derived by applying the moving average method on the dynamic response signal. To that goal, field measurements was conducted under train speeds of5 km/hr and ranging from100 km/hr to300 km/hr on Yeonjae Bridge located in the trial section of the Gyeonbu High-Speed Railway Line before its opening. The validity of the application of the moving average method is verified from comparison of measured static response and derived static response by moving average method. Moreover, evaluation is conducted on the impact factor computed for a bridge crossed by the KTX train running at operational speed.展开更多
The simulation of the ground effect has always been a technical difficulty in wind tunnel tests of high-speed trains.In this paper,large eddy simulation and the curl acoustic integral equation were used to simulate th...The simulation of the ground effect has always been a technical difficulty in wind tunnel tests of high-speed trains.In this paper,large eddy simulation and the curl acoustic integral equation were used to simulate the flow-acoustic field results of high-speed trains under four ground simulation systems(GSSs):“moving ground+rotating wheel”,“stationary ground+rotating wheel”,“moving ground+stationary wheel”,and“stationary ground+stationary wheel”.By comparing the fluid-acoustic field results of the four GSSs,the influence laws of different GSSs on the flow field structure,aero-acoustic source,and far-field radiation noise characteristics were investigated,providing guidance for the acoustic wind tunnel testing of high-speed trains.The calculation results of the aerodynamic noise of a 350 km/h high-speed train show that the moving ground and rotating wheel affect mainly the aero-acoustic performance under the train bottom.The influence of the rotating wheel on the equivalent sound source power of the whole vehicle was not more than 5%,but that of the moving ground slip was more than 15%.The average influence of the rotating wheel on the sound pressure level radiated by the whole vehicle was 0.3 dBA,while that of the moving ground was 1.8 dBA.展开更多
This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total ma...This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total mass of 137 mg,can achieve reciprocating lift motion of forelegs without any intermediate linkage mechanisms due to the design of an obliquely upward body tilt angle.The gait study shows that the body tilt angle prevents the forelegs from swinging backward when the feet contact the ground,which results in a forward friction force applied on the feet.During forward movement,the microrobot utilizes the elastic deformation of the simply supported beams as driving force to slide forward and its forelegs and rear legs work as pivots alternatively in a way similar to the movement of soft worms.The gait analysis also indicates that the moving direction of the microrobot is determined by whether its body tilt angle is obliquely upward or downward,and its moving speed is also related to the body tilt angle and as well as the body height.Under an applied AC voltage of 4 V,the microrobot can achieve a moving speed at 23.2 cm s1(18.9 body lengths per second),which is comparable to the fastest speed(20 cm s-1 or 20 body lengths per second)among the published insect-scale microrobots.The high-speed locomotion performance of the microrobot validates the feasibility of the presented actuation scheme and moving mechanism.展开更多
At present, most of China's railway hubs are developed to be transportation complexes, with some problems like unsmooth traffic circulation, mixed but disordered functions, separated spaces, etc. In high-speed rai...At present, most of China's railway hubs are developed to be transportation complexes, with some problems like unsmooth traffic circulation, mixed but disordered functions, separated spaces, etc. In high-speed rail era, high-speed railway hubs should be regarded as the catalyst to promoted urban development. The mode of urban complex should be developed, to closely connect the railway hub and the surrounding area within walking distance, so as people could get to their destinations in the most convenient way. Furthermore, it would strengthen people's aggregation, thus to bring about larger scale urban development by the successful development of urban complex.展开更多
A transportation hub is the key link in the construction of the comprehensive three-dimensional transportation corridor of the Yangtze River Economic Belt,and is the basic factor responsible for the promotion of this ...A transportation hub is the key link in the construction of the comprehensive three-dimensional transportation corridor of the Yangtze River Economic Belt,and is the basic factor responsible for the promotion of this belt.A high-speed railway hub has the“last kilometer of time-space compression”effect and is the key to building an efficient,convenient,modern,and comprehensive transportation system.This study constructed a model for measuring the connection-distribution performance of the high-speed railway hub,determined the connection-distribution performance of the urban high-speed railway hub in the Yangtze River Economic Belt,and analyzed its spatial differentiation characteristics,further revealed the influencing mechanism of the connection-distribution performance of the high-speed railway hub.The main results are as follows:(1)The connection-distribution performance of the high-speed railway hub in the Yangtze River Economic Belt presented an“olive-shaped pattern”grade structure with two small ends and a large middle section,that is,the number of high-speed railway stations with high performance and average performance was small,and the number of high-speed railway stations with good performance and medium performance was large.(2)The connection-distribution performance of the high-speed railway hub in the Yangtze River Economic Belt showed a regional differentiation pattern of“high in the east and low in the west”and“high in the north and low in the south”,and showed an urban agglomeration differentiation pattern of“high in the core areas but low in the marginal areas”;moreover,spatial differences were prominent in the distribution of nine evaluation indexes of the connection-distribution performance of the high-speed railway hub.(3)GDP,urbanization rate,city level,station passenger flow and frequency of shuttle bus were key driving factors affecting the connection-distribution performance of the high-speed railway hub.At the same time,there were significant differences in the key driving factors for the connection-distribution performance grades of high-quality,good,medium and average.展开更多
The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ ass...The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.展开更多
This paper, by studying the mechanism of the spatial restructuring of urban development and the effects of comprehensive high-speed transportation hubs on it, analyzes the development trends of comprehensive high-spee...This paper, by studying the mechanism of the spatial restructuring of urban development and the effects of comprehensive high-speed transportation hubs on it, analyzes the development trends of comprehensive high-speed transportation in Changsha-Zhuzhou-Xiangtan Area and the impacts of the growing urban area centered on comprehensive high-speed transportation hubs, like airport and high-speed railway station, on the urban development of this area. It also proposes some strategies for the spatial restructuring of Changsha-Zhuzhou-Xiangtan Area in view of the development of the comprehensive high-speed transportation hubs, like Huanghua Airport and Wuhan-Guangzhou High-speed Railway Station.展开更多
An efficient 2.5D finite element numerical modeling approach was developed to simulate wave motions generated in ground by high-speed train passages. Fourier transform with respect to the coordinate in the track direc...An efficient 2.5D finite element numerical modeling approach was developed to simulate wave motions generated in ground by high-speed train passages. Fourier transform with respect to the coordinate in the track direction was applied to re-ducing the three-dimensional dynamic problem to a plane strain problem which has been solved in a section perpendicular to the track direction. In this study, the track structure and supporting ballast layer were simplified as a composite Euler beam resting on the ground surface, while the ground with complicated geometry and physical properties was modeled by 2.5D quadrilateral elements. Wave dissipation into the far field was dealt with the transmitting boundary constructed with fre-quency-dependent dashpots. Three-dimensional responses of track structure and ground were obtained from the wavenumber expansion in the track direction. The simulated wave motions in ground were interpreted for train moving loads traveling at speeds below or above the critical velocity of a specific track-ground system. It is found that, in the soft ground area, the high-speed train operations can enter the transonic range, which can lead to resonances of the track structure and the sup-porting ground. The strong vibration will endanger the safe operations of high-speed train and accelerate the deterioration of railway structure.展开更多
The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions...The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm(PSGA) is employed for the optimizer. A rotorcraft Computational Structural Dynamics(CSD) code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics(CFD) code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.展开更多
In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed...In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed electric multiple unit(EMU)gearbox.The moving particle semi-implicit(MPS)method is used to numerically simulate the internal flow field of the gearbox of the high-speed EMU under working conditions.The effects of the velocity of the high-speed EMU,the immersion depth,and the oil sump temperature on the power loss of the gears and the lubricant quantity of each bearing are studied and provide an effective tool for the quantitative evaluation of the lubrication characteristics of the gearbox.The lubrication characteristics of the gearbox under different working conditions are studied when the oil volume adjusting device is closed and opened.The results show that the oil volume adjusting device mainly changes the amount of lubricant stirred by the output gear by changing the flow rate of lubricant from the cavity pinion(Cavity P)to the cavity gear(Cavity G),and thus affects the power loss of gears and the lubricant quantity of each bearing.展开更多
The cantilevered stator has the advantages of reducing mass and axial length of highly loaded com-pressor.The details of the hub leakage flow resulting from the clearance between the high-speed moving hub and the cant...The cantilevered stator has the advantages of reducing mass and axial length of highly loaded com-pressor.The details of the hub leakage flow resulting from the clearance between the high-speed moving hub and the cantilevered stator hub are unclear.In this paper,the effect of a moving endwall on the hub leakage flow of a cantilevered stator in a linear compressor cascade was studied.After the simulation method was verified with the experimental results,the time-averaged results of unsteady Reynolds averaged Navier-Stokes(URANS)were selected to study a case with a hub clearance of 2 mm.The results show that the effect of the moving endwall of the cantilevered cascade on the general characteristics with below 30%span increases the leakage mass flow rate and reduces the static pressure coefficient at three conditions of 0°,6°,and-7°incidences,and the change is most significant at-7°incidence.The effect of the moving endwall on the total pressure loss coefficient varies with different operating conditions,which decreases by 15.94%at 0°incidence,and increases by 4.77%and 18.51%at 6°incidence and-7°incidence,respectively.The influence of the moving endwall is below 14%span at-7°incidence,below 23%span at 0°incidence,and below 30%span at 6°incidence.These effects correspond to the static pressure coefficient and the difference of static pressure coefficient representing the blade loading.In designing the cantilevered stator and matching between the stages of a multistage compressor,the quantitative research results of this paper have certain guiding significance.展开更多
文摘In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.
基金supported by Science and Technology Project of State Grid Corporation of China(Grant No.5200-202230098A1-1-ZN)。
文摘In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite element analysis software by field test.The dynamic response and stability of loess hills under two different vibration sources under high-speed train load were studied by using two-dimensional equivalent linear response timehistory analysis,and the influence of the mechanical parameters of loess on the vibration of different types of loess hill was analyzed.Results show that there are obvious differences between peak displacement cloud maps of loess hills under the railway viaduct under gravity and train load action.We analyzed the influence of the change of elastic modulus on vibration propagation of soil of foundation and loess knoll,and found that the change of elastic modulus of soil in different position of foundation has more effect on vibration propagation than that of loess knoll soil.At the same time,the vertical acceleration cloud maps of the four types of loess hills are obviously different.
文摘The design live load of railway is divided into common railway and high-speed railway separately inKorea. Accordingly, the Korean design specification of railway specifies the impact factor for common railway and high-speed railway respectively. The impact factor for high-speed railway is based on Eurocode. Since the impact factor criteria inKoreawere established by adopting those of the Eurocode and without dedicated investigation relying on research results reflecting the domestic circumstances, thorough examination should be implemented on these criteria. Therefore the evaluation of impact factor based on field tests is required. Both dynamic and static vertical displacements are necessary to compute the impact factor. The dynamic response can be obtained from the measurement of deflection of the bridge slab crossed by the firstKoreahigh-speed train (KTX, Korea Train eXpress) running at high-speed. The main difficulties encountered are in obtaining static response because static response corresponds to the response of the bridge when the train remains immobile on the bridge or crosses the bridge at speed slower than5 km/hr. This study introduces the static response derived by applying the moving average method on the dynamic response signal. To that goal, field measurements was conducted under train speeds of5 km/hr and ranging from100 km/hr to300 km/hr on Yeonjae Bridge located in the trial section of the Gyeonbu High-Speed Railway Line before its opening. The validity of the application of the moving average method is verified from comparison of measured static response and derived static response by moving average method. Moreover, evaluation is conducted on the impact factor computed for a bridge crossed by the KTX train running at operational speed.
基金This work is supported by the National Natural Science Foundation of China(No.52272363)the Foundation of the Key Laboratory of Aerodynamic Noise Control(No.ANCL20200302),China.
文摘The simulation of the ground effect has always been a technical difficulty in wind tunnel tests of high-speed trains.In this paper,large eddy simulation and the curl acoustic integral equation were used to simulate the flow-acoustic field results of high-speed trains under four ground simulation systems(GSSs):“moving ground+rotating wheel”,“stationary ground+rotating wheel”,“moving ground+stationary wheel”,and“stationary ground+stationary wheel”.By comparing the fluid-acoustic field results of the four GSSs,the influence laws of different GSSs on the flow field structure,aero-acoustic source,and far-field radiation noise characteristics were investigated,providing guidance for the acoustic wind tunnel testing of high-speed trains.The calculation results of the aerodynamic noise of a 350 km/h high-speed train show that the moving ground and rotating wheel affect mainly the aero-acoustic performance under the train bottom.The influence of the rotating wheel on the equivalent sound source power of the whole vehicle was not more than 5%,but that of the moving ground slip was more than 15%.The average influence of the rotating wheel on the sound pressure level radiated by the whole vehicle was 0.3 dBA,while that of the moving ground was 1.8 dBA.
基金This work is supported by the National Natural Science Foundation of China(Grant No.12002017)China Postdoctoral Science Foundation(Grant No.2019M650441)the 111 Project(Grant No.B08009).
文摘This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total mass of 137 mg,can achieve reciprocating lift motion of forelegs without any intermediate linkage mechanisms due to the design of an obliquely upward body tilt angle.The gait study shows that the body tilt angle prevents the forelegs from swinging backward when the feet contact the ground,which results in a forward friction force applied on the feet.During forward movement,the microrobot utilizes the elastic deformation of the simply supported beams as driving force to slide forward and its forelegs and rear legs work as pivots alternatively in a way similar to the movement of soft worms.The gait analysis also indicates that the moving direction of the microrobot is determined by whether its body tilt angle is obliquely upward or downward,and its moving speed is also related to the body tilt angle and as well as the body height.Under an applied AC voltage of 4 V,the microrobot can achieve a moving speed at 23.2 cm s1(18.9 body lengths per second),which is comparable to the fastest speed(20 cm s-1 or 20 body lengths per second)among the published insect-scale microrobots.The high-speed locomotion performance of the microrobot validates the feasibility of the presented actuation scheme and moving mechanism.
文摘At present, most of China's railway hubs are developed to be transportation complexes, with some problems like unsmooth traffic circulation, mixed but disordered functions, separated spaces, etc. In high-speed rail era, high-speed railway hubs should be regarded as the catalyst to promoted urban development. The mode of urban complex should be developed, to closely connect the railway hub and the surrounding area within walking distance, so as people could get to their destinations in the most convenient way. Furthermore, it would strengthen people's aggregation, thus to bring about larger scale urban development by the successful development of urban complex.
基金The Key Project of National Natural Science Foundation of China,No.41930644。
文摘A transportation hub is the key link in the construction of the comprehensive three-dimensional transportation corridor of the Yangtze River Economic Belt,and is the basic factor responsible for the promotion of this belt.A high-speed railway hub has the“last kilometer of time-space compression”effect and is the key to building an efficient,convenient,modern,and comprehensive transportation system.This study constructed a model for measuring the connection-distribution performance of the high-speed railway hub,determined the connection-distribution performance of the urban high-speed railway hub in the Yangtze River Economic Belt,and analyzed its spatial differentiation characteristics,further revealed the influencing mechanism of the connection-distribution performance of the high-speed railway hub.The main results are as follows:(1)The connection-distribution performance of the high-speed railway hub in the Yangtze River Economic Belt presented an“olive-shaped pattern”grade structure with two small ends and a large middle section,that is,the number of high-speed railway stations with high performance and average performance was small,and the number of high-speed railway stations with good performance and medium performance was large.(2)The connection-distribution performance of the high-speed railway hub in the Yangtze River Economic Belt showed a regional differentiation pattern of“high in the east and low in the west”and“high in the north and low in the south”,and showed an urban agglomeration differentiation pattern of“high in the core areas but low in the marginal areas”;moreover,spatial differences were prominent in the distribution of nine evaluation indexes of the connection-distribution performance of the high-speed railway hub.(3)GDP,urbanization rate,city level,station passenger flow and frequency of shuttle bus were key driving factors affecting the connection-distribution performance of the high-speed railway hub.At the same time,there were significant differences in the key driving factors for the connection-distribution performance grades of high-quality,good,medium and average.
文摘The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.
文摘This paper, by studying the mechanism of the spatial restructuring of urban development and the effects of comprehensive high-speed transportation hubs on it, analyzes the development trends of comprehensive high-speed transportation in Changsha-Zhuzhou-Xiangtan Area and the impacts of the growing urban area centered on comprehensive high-speed transportation hubs, like airport and high-speed railway station, on the urban development of this area. It also proposes some strategies for the spatial restructuring of Changsha-Zhuzhou-Xiangtan Area in view of the development of the comprehensive high-speed transportation hubs, like Huanghua Airport and Wuhan-Guangzhou High-speed Railway Station.
基金Supported by the National Natural Science Foundation of China (Grant No. 10702063) the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070335086)
文摘An efficient 2.5D finite element numerical modeling approach was developed to simulate wave motions generated in ground by high-speed train passages. Fourier transform with respect to the coordinate in the track direction was applied to re-ducing the three-dimensional dynamic problem to a plane strain problem which has been solved in a section perpendicular to the track direction. In this study, the track structure and supporting ballast layer were simplified as a composite Euler beam resting on the ground surface, while the ground with complicated geometry and physical properties was modeled by 2.5D quadrilateral elements. Wave dissipation into the far field was dealt with the transmitting boundary constructed with fre-quency-dependent dashpots. Three-dimensional responses of track structure and ground were obtained from the wavenumber expansion in the track direction. The simulated wave motions in ground were interpreted for train moving loads traveling at speeds below or above the critical velocity of a specific track-ground system. It is found that, in the soft ground area, the high-speed train operations can enter the transonic range, which can lead to resonances of the track structure and the sup-porting ground. The strong vibration will endanger the safe operations of high-speed train and accelerate the deterioration of railway structure.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (No. 2017R1D1A1A09000590)
文摘The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm(PSGA) is employed for the optimizer. A rotorcraft Computational Structural Dynamics(CSD) code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics(CFD) code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.
基金supported by the Natural Science Foundation of Sichuan Province,China(Nos.2022NSFSC0034 and 2022NSFSC1901)the National Railway Group Science and Technology Program(No.N2021J028)+1 种基金the Independent Research and Development Projects of State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration(No.R111720H01385)the Independent Research and Development Projects of State Key Laboratory of Traction Power(No.2022TPL-T02),China。
文摘In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed electric multiple unit(EMU)gearbox.The moving particle semi-implicit(MPS)method is used to numerically simulate the internal flow field of the gearbox of the high-speed EMU under working conditions.The effects of the velocity of the high-speed EMU,the immersion depth,and the oil sump temperature on the power loss of the gears and the lubricant quantity of each bearing are studied and provide an effective tool for the quantitative evaluation of the lubrication characteristics of the gearbox.The lubrication characteristics of the gearbox under different working conditions are studied when the oil volume adjusting device is closed and opened.The results show that the oil volume adjusting device mainly changes the amount of lubricant stirred by the output gear by changing the flow rate of lubricant from the cavity pinion(Cavity P)to the cavity gear(Cavity G),and thus affects the power loss of gears and the lubricant quantity of each bearing.
基金the National Natural Science Foundation of China(Nos.52076129 and 51576124)the National Science and Technology Major Project(No.2017-II-0004-0017)。
文摘The cantilevered stator has the advantages of reducing mass and axial length of highly loaded com-pressor.The details of the hub leakage flow resulting from the clearance between the high-speed moving hub and the cantilevered stator hub are unclear.In this paper,the effect of a moving endwall on the hub leakage flow of a cantilevered stator in a linear compressor cascade was studied.After the simulation method was verified with the experimental results,the time-averaged results of unsteady Reynolds averaged Navier-Stokes(URANS)were selected to study a case with a hub clearance of 2 mm.The results show that the effect of the moving endwall of the cantilevered cascade on the general characteristics with below 30%span increases the leakage mass flow rate and reduces the static pressure coefficient at three conditions of 0°,6°,and-7°incidences,and the change is most significant at-7°incidence.The effect of the moving endwall on the total pressure loss coefficient varies with different operating conditions,which decreases by 15.94%at 0°incidence,and increases by 4.77%and 18.51%at 6°incidence and-7°incidence,respectively.The influence of the moving endwall is below 14%span at-7°incidence,below 23%span at 0°incidence,and below 30%span at 6°incidence.These effects correspond to the static pressure coefficient and the difference of static pressure coefficient representing the blade loading.In designing the cantilevered stator and matching between the stages of a multistage compressor,the quantitative research results of this paper have certain guiding significance.