期刊文献+
共找到743篇文章
< 1 2 38 >
每页显示 20 50 100
Noise reduction mechanism of high-speed railway box-girder bridges installed with MTMDs on top plate
1
作者 Xiaoan Zhang Xiaoyun Zhang +2 位作者 Jianjin Yang Li Yang Guangtian Shi 《Railway Engineering Science》 EI 2024年第4期518-532,共15页
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can... The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate. 展开更多
关键词 high-speed railway Box-girder bridge MTMDs Noise control design Noise reduction mechanism
下载PDF
Incompatible thermal deformation of interlayers and corresponding damage mechanism of high-speed railway track structure 被引量:1
2
作者 Guotang Zhao Lei Zhao Yu Liu 《High-Speed Railway》 2023年第1期37-46,共10页
In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field w... In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered. 展开更多
关键词 high-speed railway Ballastless track bed Incompatible thermal deformation Damage mechanism
下载PDF
Microstructure,Properties and Crack Suppression Mechanism of High-speed Steel Fabricated by Selective Laser Melting at Different Process Parameters
3
作者 Wenbin Ji Chuncheng Liu +1 位作者 Shijie Dai Riqing Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期91-105,共15页
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SL... To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation. 展开更多
关键词 Selective laser melting high-speed steel mechanical properties MICROSTRUCTURE Interlaminar cracks
下载PDF
TOOL WEAR PATTERNS AND MECHANISMS OF SOLID CEMENTED CARBIDE IN HIGH-SPEED MILLING OF ALUMINUM ALLOY 被引量:2
4
作者 万熠 刘战强 +1 位作者 艾兴 潘永智 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期125-128,共4页
The wear patterns and wear mechanisms of solid cemented carbide are analyzed in high-speed milling of aluminum alloy. Results show that the dominant wear patterns are coating damage, crater wear, micro-chipping, break... The wear patterns and wear mechanisms of solid cemented carbide are analyzed in high-speed milling of aluminum alloy. Results show that the dominant wear patterns are coating damage, crater wear, micro-chipping, breakage, and so on. The main wear mechanisms are adhesion, diffusion and fatigue. Compared with conventional speed machining, the effect and impact of thermal-dynamical coupling field play an important role in the cutting tool wear in high-speed milling of aluminum alloy. 展开更多
关键词 high-speed milling aluminum alloy tool wear wear pattern wear mechanism
下载PDF
Prediction and Output Estimation of Pattern Moving in Non-Newtonian Mechanical Systems Based on Probability Density Evolution
5
作者 Cheng Han Zhengguang Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期515-536,共22页
A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies t... A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies the generalized Lipschitz condition.As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics,the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables,which poses difficulties in predicting and estimating the system’s output.In this article,the temporal variation of the system is described by constructing pattern category variables,which are non-deterministic variables.Since pattern category variables have statistical attributes but not operational attributes,operational attributes are assigned to them by posterior probability density,and a method for analyzing their motion laws using probability density evolution is proposed.Furthermore,a data-driven form of pattern motion probabilistic density evolution prediction method is designed by combining pseudo partial derivative(PPD),achieving prediction of the probability density satisfying the system’s output uncertainty.Based on this,the final prediction estimation of the system’s output value is realized by minimum variance unbiased estimation.Finally,a corresponding PPD estimation algorithm is designed using an extended state observer(ESO)to estimate the parameters to be estimated in the proposed prediction method.The effectiveness of the parameter estimation algorithm and prediction method is demonstrated through theoretical analysis,and the accuracy of the algorithm is verified by two numerical simulation examples. 展开更多
关键词 Non-newtonian mechanical systems prediction and estimation pattern moving probability density evolution pseudo partial derivative
下载PDF
Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading 被引量:4
6
作者 Xiao Liu Hui Yang +3 位作者 Biwu Zhu Yuanzhi Wu Wenhui Liu Changping Tang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期1096-1108,共13页
Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommo... Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommodation mechanism of the pre-rolled AZ31 magnesium alloy under high-speed impact loading were investigated.The twin and shear band are prevailing at low temperature,and the coexistence of twins and recrystallized grains is the dominant microstructure at medium temperature,while at high temperature,dynamic recrystallization(DRX)is almost complete.The increment of temperature reduces the critical condition difference between twinning and DRX,and the recrystallized temperature decreases with increasing strain rate.The mechanical response is related to the competition among the shear band strengthen,the twin strengthen and the fine grain strengthen and determined by the prevailing grain structure.The fine grain strengthen could compensate soften caused by the temperature increase and the reduction of twin and shear band.During high-speed deformation,different twin variants,introduced by pre-rolling,induce different deformation mechanism to accommodate plastic deformation and are in favor for non-basal slip.At low temperature,the high-speed deformation is achieved by twinning,dislocation slip and the following deformation shear band at different deformation stages.At high temperature,the high-speed deformation is realized by twinning and dislocation slip of early deformation stage,transition shear band of medium deformation stage and DRX of final deformation stage. 展开更多
关键词 mechanical response Pre-twinning Accommodation mechanism Pre-rolled AZ31 magnesium alloy high-speed impact loading
下载PDF
Dynamic Analysis of High-Speed Boat Motion Simulator by a Novel 3-DoF Parallel Mechanism with Prismatic Actuators Based on Seakeeping Trial 被引量:3
7
作者 Ali Pirouzfar Javad Enferadi Masoud Dehghan 《Journal of Marine Science and Application》 CSCD 2018年第2期178-191,共14页
In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recor... In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored. 展开更多
关键词 MOTION simulators Parallel mechanism high-speed BOAT SEAKEEPING TRIAL INVERSE dynamics Virtualwork
下载PDF
A method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed presses 被引量:1
8
作者 Jun Wang1 ,Sheng-dun Zhao1 ,Hu-shan Shi1 ,Chun-jian Hua21. School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049 2. School of Mechanical Engineering,Southern Yangtze University,Wuxi 214122,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第3期141-148,共8页
A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank m... A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank mechanism whose crank rotates at a constant angular velocity,the kinematic parameters of the slide,connecting rod and crank were formulated approximately. On the basis of the results above,three inertia forces and the input moment in the mechanism during its idle running were investigated and formulated by dynamic analysis. A verification experiment was performed on a slider-crank mechanism at a high-speed press machine. The forces derived from the established formulas were compared respectively with those obtained by the ADAMS software and the classical method of connecting rod mass substitution. It was experimentally found that the proposed formulas have an improved performance over related earlier techniques. By use of these results,a 1 000 kN 1 250 rpm four-point high-speed press machine was designed and manufactured. The slide of this press is driven by four sets of slider-crank mechanisms with symmetrical layout and opposite rotation directions to counterbalance the horizontal inertia forces. Four eccentric counterbalance blocks were designed to counterbalance the vertical force after their mass and equivalent eccentric radius were formulated. The high-speed press machine designed by the proposed counterbalance method has worked with satisfactory performance and good dynamic balance for more than four years in practical production. 展开更多
关键词 slider-crank mechanism KINEMATICS inertia force counterbalance high-speed press
下载PDF
Analysis of stress and natural frequencies of high-speed spatial parallel mechanism
9
作者 陈修龙 李文彬 +1 位作者 邓昱 李云峰 《Journal of Central South University》 SCIE EI CAS 2013年第10期2676-2684,共9页
In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dyn... In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism. 展开更多
关键词 high-speed SPATIAL parallel mechanism STRESS NATURAL frequency driving LIMB dynamic behavior
下载PDF
Evaluation of vertical impact factor coefficients for continuous and integral railway bridges under high-speed moving loads 被引量:4
10
作者 Anand M.Gharad Ranjan S.Sonparote 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期495-504,共10页
In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of sp... In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis. 展开更多
关键词 impact factor dynamic soil-structure interaction high-speed moving loads finite element analysis continuous bridge integral bridge
下载PDF
Aerodynamic characteristics of a high-speed train crossing the wake of a bridge tower from moving model experiments 被引量:5
11
作者 Jinfeng Wu Xiaozhen Li +1 位作者 C.S.Cai Dejun Liu 《Railway Engineering Science》 2022年第2期221-241,共21页
In a strong crosswind,the wake of a bridge tower will lead to an abrupt change of the aerodynamic forces acting on a vehicle passing through it,which may result in problems related to the transportation safety.This st... In a strong crosswind,the wake of a bridge tower will lead to an abrupt change of the aerodynamic forces acting on a vehicle passing through it,which may result in problems related to the transportation safety.This study investigates the transient aerodynamic characteristics of a high-speed train moving in a truss girder bridge and passing by a bridge tower in a wind tunnel.The scaled ratio of the train,bridge,and tower are 1:30.Effects of various parameters such as the incoming wind speed,train speed,and yaw angle on the aerodynamic performance of the train were considered.Then the sudden change mechanism of aerodynamic loads on the train when it crosses over the tower was further discussed.The results show that the bridge tower has an apparent shielding effect on the train passing through it,with the influencing width being larger than the width of the tower.The train speed is the main factor affecting the influencing width of aerodynamic coefficients,and the mutation amplitude is mainly related to the yaw angle obtained by changing the incoming wind speed or train speed.The vehicle movement introduces an asymmetry of loading on the train in the process of approaching and leaving the wake of the bridge tower,which should not be neglected. 展开更多
关键词 Vehicle aerodynamics Wind tunnel test moving train Bridge tower Shielding effect Sudden change mechanism Truss bridge
下载PDF
Earthquake Emergency Response System of High-speed Railway by Least Square Method
12
作者 Qizhou Hu Yikai Wu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期1-11,共11页
This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthqua... This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthquake emergency response, the technical operational procedures for HSR seismic emergency response are proposed. The quantity, scale, and location of HSR earthquake emergency response mechanism are defined, and the corresponding emergency response system is built. In particular, the earthquake emergency response system can conduct real-time continuous dynamic monitoring of seismic activity along the railway. When earthquake occurs, the intensity of the ground motion is detected by the system. When the earthquake monitoring value reaches the earthquake alarm threshold, it will send an alarm signal to the dispatch center, and the emergency power supply will be forced to cut off. The earthquake emergency response system will continue to monitor the follow-up ground motion acceleration. The system provides the operation scheduling center with a basis for train operation control to resume operation after stopping. The monitoring result of the system reduces the disaster, and the secondary disaster is caused by the earthquake. This paper improves the HSR response mechanism in detecting earthquake disasters. The result improves the ability of HSR to deal with earthquake disasters, and reduces casualties and economic and property loss caused by earthquake disasters. 展开更多
关键词 high-speed railway(HSR) earthquake monitoring emergency response mechanism
下载PDF
Full-scale multi-functional test platform for investigating mechanical performance of track–subgrade systems of high-speed railways 被引量:4
13
作者 Wanming Zhai Kaiyun Wang +3 位作者 Zhaowei Chen Shengyang Zhu Chengbiao Cai Gang Liu 《Railway Engineering Science》 2020年第3期213-231,共19页
Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway... Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure. 展开更多
关键词 Full-scale test high-speed railway Track–subgrade system Ballastless track Ballasted track mechanical performance Long-term performance evolution Damage and degradation
下载PDF
Evolution and formation mechanism of rail corrugation in high-speed railways involving the longitudinal wheel-track coupling relationship
14
作者 SHEN YiZhe ZHU ShengYang +1 位作者 YANG JianJin ZHAI WanMing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第11期3612-3625,共14页
Rail corrugation poses a significant threat to train running safety in the field of railway engineering.Therefore,this study employs numerical analysis to investigate the evolution and formation mechanism of rail corr... Rail corrugation poses a significant threat to train running safety in the field of railway engineering.Therefore,this study employs numerical analysis to investigate the evolution and formation mechanism of rail corrugation in high-speed railways(HSR).Firstly,a three-dimensional(3D)vehicle-track coupled dynamics(VTCD)model is established,which considers the longitudinal wheel-rail(WR)coupling relationship more adequately.Then,by integrating the USFD wear model into this 3D VTCD model,a long-term iterative wear model is developed to reproduce the corrugation evolution process.The predicted corrugation exhibits two distinct wavelength components and closely matches the sample obtained from China's HSR,validating the established model in terms of reliability.Furthermore,the formation mechanism of these two wavelength components is investigated by analyzing the harmonic behavior of vehicle-track coupled systems(VTCS)and the evolution law of rail corrugation under different calculation conditions.The findings reveal that the 3rd-order vertical rail local bending mode(RLBM)between two wheelsets of a bogie(TW-B)is the primary factor contributing to the formation of the long-wavelength component of rail corrugation.The discrete supports of the fasteners do not affect the 3rd-order vertical RLBM,which can be stably excited.Moreover,the vertical rail vibration has a substantial coupled effect on the longitudinal WR creep.When the 3rd-order vertical RLBM is excited,the coupled effect and the negative longitudinal WR creepage together evidently promote the formation of the short-wavelength component of rail corrugation. 展开更多
关键词 vehicle-track coupled dynamics high-speed railways rail corrugation wear prediction formation mechanism
原文传递
Innovative design and motion mechanism analysis for a multi-moving state autonomous underwater vehicles 被引量:1
15
作者 GAO Fu-dong HAN Yan-yan +1 位作者 WANG Hai-dong JI Gang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1133-1143,共11页
In order to achieve the functional requirements of multi-moving state, a new autonomous underwater vehicle(AUV) provided with the functions such as the submarine vectorial thrust, landing on the sea bottom, wheel driv... In order to achieve the functional requirements of multi-moving state, a new autonomous underwater vehicle(AUV) provided with the functions such as the submarine vectorial thrust, landing on the sea bottom, wheel driving on the ground and crawling on the ground was designed. Then five new theories and methods were proposed about the motion mechanism of the AUV such as vectorial thruster technology, design of a new wheel propeller, kinematics and dynamics, navigation control and the ambient flow field in complex sea conditions, which can all conquer conventional technique shortages and predict the multi-moving state performance under wave disturbance. The theoretical research can realize the results such as a vectorial transmission shaft with the characteristics of spatial deflexion and continual circumgyratetion, parameterized design of the new wheel propeller with preferable open-water performance and intensity characteristics satisfying multi-moving state requirements, motion computation and kinetic analysis of AUV's arbitrary postures under wave disturbance, a second-order sliding mode controller with double-loop structure based on dynamic boundary layer that ensures AUV's trajectory high-precision tracking performance under wave disturbance, fast and exact prediction of the ambient flow field characteristics and the interaction mechanism between AUV hull and wheel propellers. The elaborate data obtained from the theoretical research can provide an important theoretical guidance and technical support for the manufacture of experimental prototype. 展开更多
关键词 multi-moving state autonomous UNDERWATER vehicle INNOVATIVE design motion mechanism wave DISTURBANCE
下载PDF
The moving mechanisms of LNAPL in unsaturated zone and aquifer
16
《Global Geology》 1998年第1期27-27,共1页
关键词 The moving mechanisms of LNAPL in unsaturated zone and aquifer
下载PDF
Structure and behavior of floor system of two super high-speed railway Changjiang composite bridges 被引量:3
17
作者 张晔芝 张敏 《Journal of Central South University》 SCIE EI CAS 2011年第2期542-549,共8页
Wuhan Tianxingzhou Changjiang (WTC) Bridge and Nanjing Dashengguan Changjiang (NDC) Bridge are two super high-speed railway 3-trusses composite bridges. This is the first time of using three trusses in such large brid... Wuhan Tianxingzhou Changjiang (WTC) Bridge and Nanjing Dashengguan Changjiang (NDC) Bridge are two super high-speed railway 3-trusses composite bridges. This is the first time of using three trusses in such large bridges in the world. These two types of railway floor systems of the two bridges have never been used in China before. The problem how to conform the deformations and stress levels of the railway floor system of WTC Bridge was studied. After finite element analysis and comparison,the plan of arranging one expansion stringer every two panels in railway floor system were proposed and good effect was obtained. Because of the application of three trusses,the allocation of the loads acted on the deck in three trusses is different and varies in different places of NDC Bridge. This problem was studied by model experiment and 3D finite element analysis. The results of 3D FEM analysis coincide with the model test results. The allocation rule of the loads acting on the deck in three trusses was presented. Because of the application of monolithic decks,the stiffness and structural integrity of NDC Bridge are high. 展开更多
关键词 high-speed railway composite mechanics characteristics floor system Wuhan Tianxingzhou Changjiang Bridge Nanjing Dashengguan Changjiang Bridge
下载PDF
Influence of backward flowing molten jet on humping bead formation during high-speed GMA welding 被引量:2
18
作者 陈姬 武传松 《China Welding》 EI CAS 2009年第1期13-17,共5页
Considering the influence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during h... Considering the influence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during high-speed gas metal arc (GMA) welding. Three-dimensional geometry of the humping bead is numerically simulated only if some extra force and heat acted at the rear part of weld pool are taken into account in the model. It has proved that both the momentum and heat content of backward flowing molten jet must be appropriately treated to quantitatively analyze the physical mechanism of the humping phenomenon. 展开更多
关键词 high-speed GMAW numerical analysis hump forming mechanism
下载PDF
Refinement of TiB_(2)Powders with High-speed Planetary Mill and Its Effect on TiB_(2)Sinterability 被引量:1
19
作者 HUANG Qiwei AI Ruomeng +4 位作者 BAI Wenhui HE Qianglong WANG Aiyang HU Lanxin WANG Weimin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第3期331-337,共7页
Titanium diboride ceramic was produced via spark plasma sintering(SPS)using finer TiB_(2)powder made by high-speed planetary ball milling.The effects of ball milling parameters on the composites and particle size of T... Titanium diboride ceramic was produced via spark plasma sintering(SPS)using finer TiB_(2)powder made by high-speed planetary ball milling.The effects of ball milling parameters on the composites and particle size of TiB_(2)powder were investigated.It was shown that the average particle size of TiB_(2)powder decreased from 5.8 to 1.59μm and the wear rate of WC balls was 1.58 wt%,when the ball-to-powder weight ratio(BPR),the rotary speed and milling time and were 10:1,600 rpm and 20 min,respectively.The content of WC in TiB_(2)powder can be limited below 4.58 vol%by optimizing the milling conditions.The sintering temperature of TiB_(2)powder milled can be decreased obviously,and the mechanical properties are evidently improved and the microstructure becomes more homogeneous when the powder of TiB_(2)becomes finer.The relative density,hardness,bending strength,and fracture toughness of the TiB_(2)ceramic fabricated at 1700℃reach the optimal values,which are 98.13%,19.14 GPa,756 MPa,and 5.71 MPa·m~(1/2),respectively.The decrease of TiB_(2)particle size and the introduction of WC are the potential reasons for the improvement of TiB_(2)ceramic performance. 展开更多
关键词 TiB_(2)ceramic high-speed planetary ball mill particle size WC mechanical property
下载PDF
Fracture Analysis of Composites in High-speed Tension
20
作者 蒋持平 曹利 +2 位作者 邹振祝 王铎 姚忠凯 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1989年第6期430-433,共4页
In this paper the results of a high-speed tension experiment of the SiC_w/Al composite have been reported and a simplified theoretical model has been developed to study the fracture mechanism of composites in high-spe... In this paper the results of a high-speed tension experiment of the SiC_w/Al composite have been reported and a simplified theoretical model has been developed to study the fracture mechanism of composites in high-speed tension. This theoretical model provides a new explanation for the increase of dynamic fracture strength of composites in high-speed tension. 展开更多
关键词 composite material high-speed tension fracture mechanics analytical function
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部