Photonic integrated circuits(PICs)represent a promising technology for the muchneeded medical devices of today.Their primary advantage lies in their ability to integrate multiple functions onto a single chip,thereby r...Photonic integrated circuits(PICs)represent a promising technology for the muchneeded medical devices of today.Their primary advantage lies in their ability to integrate multiple functions onto a single chip,thereby reducing the complexity,size,maintenance requirements,and costs.When applied to optical coherence tomography(OCT),the leading tool for state-of-the-art ophthalmic diagnosis,PICs have the potential to increase accessibility,especially in scenarios,where size,weight,or costs are limiting factors.In this paper,we present a PIC-based CMOS-compatible spectrometer for spectral domain OCT with an unprecedented level of integration.To achieve this,we co-integrated a 512-channel arrayed waveguide grating with electronics.We successfully addressed the challenge of establishing a connection from the optical waveguides to the photodiodes monolithically co-integrated on the chip with minimal losses achieving a coupling efficiency of 70%.With this fully integrated PIC-based spectrometer interfaced to a spectral domain OCT system,we reached a sensitivity of 92dB at an imaging speed of 55kHz,with a 6dB signal roll-off occurring at 2mm.We successfully applied this innovative technology to obtain 3D in vivo tomograms of zebrafish larvae and human skin.This ground-breaking fully integrated spectrometer represents a significant step towards a miniaturised,cost-effective,and maintenance-free OCT system.展开更多
Utilizing hybrid integration model.the integrated model optocouplers have successfully developed.The design,fabrication and characteristic parameters of the devices are presented.
Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optica...Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal-oxide-semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems.展开更多
A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an M...A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an MQW laser diode and a heterojunction bipolar tran sistors driver circuit is described.A clear eye output diagram via an O/E converter is demonstrat ed und er a 1.25Gb/s non-return-zero pseudorandom code with a pattern length of 2 the integrated transmitter has a power dissipation of about 120mW with an optical output of 2dBm.展开更多
Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and opt...Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit(PIC)devices.Here,we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface,lithium niobate on insulator photonic waveguides,and electrodes within a PIC device.As proofs of concept,we showcase the generation of a focus beam with reconfigurable arbitrary polarizations,switchable focusing with lateral focal positions and focal length,orbital angular momentum light beams as well as Bessel beams.Our measurements indicate modulation speeds of up to the gigahertz rate.This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system,paving the way for potential applications in optical communication,computation,sensing,and imaging.展开更多
The MOBILE is a logic element realizing the monostable-bistable transition of a circuit that consists of two resonant tunneling transistors—the resonant tunneling diodes (RTDs) connected in series. It has several adv...The MOBILE is a logic element realizing the monostable-bistable transition of a circuit that consists of two resonant tunneling transistors—the resonant tunneling diodes (RTDs) connected in series. It has several advantages including multiple inputs and multiple functions. In this paper, by connecting a heterojunction phototransistor (HPT) with the MOBILE, a novel optoelectronic functional device can be got, which presents the function of both photocurrent switching and photocurrent latching. These behaviors have been demonstrated for the first time by simulating experiments and circuit simulations, with RTDs firstly manufactured in China. Research indicates that the novel photo-controlled MOBILE has the same logic functions as conventional electrical MOBILE except for with light as an input signal.展开更多
We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded...We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.展开更多
基金carried out in the framework of the project COHESION,No.848588funded by the Austrian Research Promotion Agency(FFG)support for the research of this work from funding from the European Union’s Horizon 2020 research and innovation program HandheldOCT(H2020,ICT 871312).
文摘Photonic integrated circuits(PICs)represent a promising technology for the muchneeded medical devices of today.Their primary advantage lies in their ability to integrate multiple functions onto a single chip,thereby reducing the complexity,size,maintenance requirements,and costs.When applied to optical coherence tomography(OCT),the leading tool for state-of-the-art ophthalmic diagnosis,PICs have the potential to increase accessibility,especially in scenarios,where size,weight,or costs are limiting factors.In this paper,we present a PIC-based CMOS-compatible spectrometer for spectral domain OCT with an unprecedented level of integration.To achieve this,we co-integrated a 512-channel arrayed waveguide grating with electronics.We successfully addressed the challenge of establishing a connection from the optical waveguides to the photodiodes monolithically co-integrated on the chip with minimal losses achieving a coupling efficiency of 70%.With this fully integrated PIC-based spectrometer interfaced to a spectral domain OCT system,we reached a sensitivity of 92dB at an imaging speed of 55kHz,with a 6dB signal roll-off occurring at 2mm.We successfully applied this innovative technology to obtain 3D in vivo tomograms of zebrafish larvae and human skin.This ground-breaking fully integrated spectrometer represents a significant step towards a miniaturised,cost-effective,and maintenance-free OCT system.
文摘Utilizing hybrid integration model.the integrated model optocouplers have successfully developed.The design,fabrication and characteristic parameters of the devices are presented.
基金supported by the National Basic Research Program of China(No.2011CBA00608)the National Natural Science Foundation of China(Nos.61178051,61321063,61335010,61178048,61275169)the National High Technology Research and Development Program of China(Nos.2013AA013602,2013AA031903,2013AA032204)
文摘Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal-oxide-semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems.
文摘A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an MQW laser diode and a heterojunction bipolar tran sistors driver circuit is described.A clear eye output diagram via an O/E converter is demonstrat ed und er a 1.25Gb/s non-return-zero pseudorandom code with a pattern length of 2 the integrated transmitter has a power dissipation of about 120mW with an optical output of 2dBm.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0705000)the National Natural Science Foundation of China(Grant Nos.12192251,12274134,12174186,and 62288101)+2 种基金the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1101500)the Shanghai Municipal Education Commission(Grant No.2023ZKZD35)the Shanghai Pujiang Program(Grant No.20PJ1403400)
文摘Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit(PIC)devices.Here,we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface,lithium niobate on insulator photonic waveguides,and electrodes within a PIC device.As proofs of concept,we showcase the generation of a focus beam with reconfigurable arbitrary polarizations,switchable focusing with lateral focal positions and focal length,orbital angular momentum light beams as well as Bessel beams.Our measurements indicate modulation speeds of up to the gigahertz rate.This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system,paving the way for potential applications in optical communication,computation,sensing,and imaging.
文摘The MOBILE is a logic element realizing the monostable-bistable transition of a circuit that consists of two resonant tunneling transistors—the resonant tunneling diodes (RTDs) connected in series. It has several advantages including multiple inputs and multiple functions. In this paper, by connecting a heterojunction phototransistor (HPT) with the MOBILE, a novel optoelectronic functional device can be got, which presents the function of both photocurrent switching and photocurrent latching. These behaviors have been demonstrated for the first time by simulating experiments and circuit simulations, with RTDs firstly manufactured in China. Research indicates that the novel photo-controlled MOBILE has the same logic functions as conventional electrical MOBILE except for with light as an input signal.
文摘We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.
基金The National Natural Science Foundation of China(No.61205060)the Natural Science Foundation of Fujian Province of China(No.2011J01361)the Key Project of Science and Technology of Fujian Province of China(No.2013H0047)