In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be...In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.展开更多
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th...The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).展开更多
This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage...This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.展开更多
This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based o...This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design.展开更多
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati...This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.展开更多
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper...This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
In order to reduce the cogging torque, this paper investigates the influence of some parameters on the cogging torque developed by directly driven permanent magnet synchronous wind generators. Based on the remanent ma...In order to reduce the cogging torque, this paper investigates the influence of some parameters on the cogging torque developed by directly driven permanent magnet synchronous wind generators. Based on the remanent magnetic flux densities, the cogging torque is computed by using finite element method. It is shown that many parameters have influence on cogging torque and the slot and pole number combination has a significant effect on cogging torque. A simple factor has been introduced to indicate the effect of the slot and pole number combination. Some practical experience to reduce the cogging torque was applied to 2 MW three phase permanent magnet synchronous generator at rated speed of 37.5 rpm for wind energy conversion. The simulation and experiment results verify the effect of the proposed method.展开更多
This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctanc...This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator.展开更多
To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace app...To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.展开更多
A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d a...A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d and q axis currents in the d-q subspace and harmonic currents in the x-y subspace.In the d-q subspace,the proposed strategy uses a model-based LADRC to enhance the decoupling effect between the d and q axes and the disturbance rejection ability against parameter variation.In the x-y subspace,the 5th and 7th harmonic current suppression abilities are improved by using quasi-resonant units parallel to the extended state observer of the traditional LADRC.The proposed modified LADRC strategy improved both the steady-state performance and dynamic response of the DTP-PMSG system.The experimental results demonstrate that the proposed strategy is both feasible and effective.展开更多
The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage mod...The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.展开更多
This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonline...This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine.展开更多
The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence...The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given.展开更多
A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high per...A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted.展开更多
A new type of double salient starter/generator is presented, which can be used in aircraft Low Voltage Direct Current (LVDC), Variable Speed Constant Frequency (VSCF) and High Voltage Direct Current (HVDC) systems. Th...A new type of double salient starter/generator is presented, which can be used in aircraft Low Voltage Direct Current (LVDC), Variable Speed Constant Frequency (VSCF) and High Voltage Direct Current (HVDC) systems. The operational theory of the motor and generator is analyzed, and corresponding control strategies are given. An 18kW prototype has been implemented to verify the system performance. It is shown that the DSM S/G system possesses simple structure, high efficiency and flexible control. It is ap...展开更多
More Electrical Aircraft(MEA)which replaces the hydraulic and pneumatic power by electrical power leads to reducing emissions and fuel consumption.The MEA concept has led to a growing use of the starter/generator(S/G)...More Electrical Aircraft(MEA)which replaces the hydraulic and pneumatic power by electrical power leads to reducing emissions and fuel consumption.The MEA concept has led to a growing use of the starter/generator(S/G)system.Permanent magnet(PM)machines have been gaining interests for aircraft S/G system application over the last few years.This is mainly due to the several advantages,including high power density,high efficiency and high speed ability.The shortcoming of the PM machines is the de-excitation problem in case of a failure,which is a main issue for the aircraft application.However,by using a PM machine with high reactance or multiphase configuration,the fault-tolerant ability can be improved.In terms of the aircraft S/G system,this paper is going to present a comprehensive analysis of PM machines.Firstly,the state-of-the-art of PM starter/generator(PMS/G)is summarized and the basic structure of PMS/G system is analyzed.Next,key technologies of the PMS/G system are summarized and analyzed.Finally,a flux weakening fault protection strategy that is used to suppress the turn-to-turn short circuit(SC)current is studied,simulated and verified.With the breakthrough of key technologies based on the development of high temperature electromagnetic material and high temperature power electronics,the PMS/G will be a potential candidate for aircraft S/G system including the embedded power generation system.展开更多
We present a sensorless efficiency test system with energy recovery for a high-speed permanent magnet synchronous motor(PMSM). In the system, two identical high-speed PMSMs are used as the motor under test(MUT)and the...We present a sensorless efficiency test system with energy recovery for a high-speed permanent magnet synchronous motor(PMSM). In the system, two identical high-speed PMSMs are used as the motor under test(MUT)and the load machine(LM),respectively.A new sensorless vector control(VC) method based on a hypothetical reference frame is presented to control both the MUT and the LM.Also,a regenerating unit is used to implement energy circulation to save energy.Experiments were carried out on a prototype, with a digital controller based on the TMS320 F28335, to verify the adequacy of the sensorless VC method.As a result,the efficiency test system achieves the load test at the speed of 21000 r/min without any reduction equipment. During the test, the energy regenerated by the LM could be fed back to the MUT by the regenerating unit, and 81.31% electrical power was saved.In addition, with the proposed sensorless VC method,both the MUT and the LM can work at i_d = 0 without a position sensor.展开更多
基金Supported by the National Natural Science Foundation of China(No.51577124)Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC32100)
文摘In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.
文摘The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).
文摘This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.
文摘This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design.
文摘This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.
基金Project supported by the CMEP-TASSILI Project(Grant No.14MDU920)
文摘This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.
文摘In order to reduce the cogging torque, this paper investigates the influence of some parameters on the cogging torque developed by directly driven permanent magnet synchronous wind generators. Based on the remanent magnetic flux densities, the cogging torque is computed by using finite element method. It is shown that many parameters have influence on cogging torque and the slot and pole number combination has a significant effect on cogging torque. A simple factor has been introduced to indicate the effect of the slot and pole number combination. Some practical experience to reduce the cogging torque was applied to 2 MW three phase permanent magnet synchronous generator at rated speed of 37.5 rpm for wind energy conversion. The simulation and experiment results verify the effect of the proposed method.
基金The Swedish Research Council for their financial support
文摘This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator.
基金co-supported by the National Natural Science Foundation of China(No.52177028)in part by the Aeronautical Science Foundation of China(No.201907051002)。
文摘To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.
基金Supported by the National Science Fund for Distinguished Young Scholars under Grant 52025073 and the Zhenjiang Key Research Program under Grant GY2020011.
文摘A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d and q axis currents in the d-q subspace and harmonic currents in the x-y subspace.In the d-q subspace,the proposed strategy uses a model-based LADRC to enhance the decoupling effect between the d and q axes and the disturbance rejection ability against parameter variation.In the x-y subspace,the 5th and 7th harmonic current suppression abilities are improved by using quasi-resonant units parallel to the extended state observer of the traditional LADRC.The proposed modified LADRC strategy improved both the steady-state performance and dynamic response of the DTP-PMSG system.The experimental results demonstrate that the proposed strategy is both feasible and effective.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51377041)
文摘The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.
文摘This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine.
基金supported by the National Natural Science Foundation of China (No. 52277094)Science and Technology Project of China Huaneng Group Co.,Ltd.(No. HNKJ20-H88)。
文摘The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given.
文摘A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted.
文摘A new type of double salient starter/generator is presented, which can be used in aircraft Low Voltage Direct Current (LVDC), Variable Speed Constant Frequency (VSCF) and High Voltage Direct Current (HVDC) systems. The operational theory of the motor and generator is analyzed, and corresponding control strategies are given. An 18kW prototype has been implemented to verify the system performance. It is shown that the DSM S/G system possesses simple structure, high efficiency and flexible control. It is ap...
基金This work was supported in part by National Natural Science Foundation for Excellent Young Scholar of China under Award 51622704Jiangsu Provincial Science Funds for Distinguished Young Scientists under Award BK20150033.
文摘More Electrical Aircraft(MEA)which replaces the hydraulic and pneumatic power by electrical power leads to reducing emissions and fuel consumption.The MEA concept has led to a growing use of the starter/generator(S/G)system.Permanent magnet(PM)machines have been gaining interests for aircraft S/G system application over the last few years.This is mainly due to the several advantages,including high power density,high efficiency and high speed ability.The shortcoming of the PM machines is the de-excitation problem in case of a failure,which is a main issue for the aircraft application.However,by using a PM machine with high reactance or multiphase configuration,the fault-tolerant ability can be improved.In terms of the aircraft S/G system,this paper is going to present a comprehensive analysis of PM machines.Firstly,the state-of-the-art of PM starter/generator(PMS/G)is summarized and the basic structure of PMS/G system is analyzed.Next,key technologies of the PMS/G system are summarized and analyzed.Finally,a flux weakening fault protection strategy that is used to suppress the turn-to-turn short circuit(SC)current is studied,simulated and verified.With the breakthrough of key technologies based on the development of high temperature electromagnetic material and high temperature power electronics,the PMS/G will be a potential candidate for aircraft S/G system including the embedded power generation system.
基金supported by the Science and Technology Project of State Grid Corporation, ‘‘Research on Key Technologies of Flexible Control Strategy for Variable Speed Pumped Storage Units’’the Fundamental Research Funds for the Central Universities (No. B18020574)
文摘We present a sensorless efficiency test system with energy recovery for a high-speed permanent magnet synchronous motor(PMSM). In the system, two identical high-speed PMSMs are used as the motor under test(MUT)and the load machine(LM),respectively.A new sensorless vector control(VC) method based on a hypothetical reference frame is presented to control both the MUT and the LM.Also,a regenerating unit is used to implement energy circulation to save energy.Experiments were carried out on a prototype, with a digital controller based on the TMS320 F28335, to verify the adequacy of the sensorless VC method.As a result,the efficiency test system achieves the load test at the speed of 21000 r/min without any reduction equipment. During the test, the energy regenerated by the LM could be fed back to the MUT by the regenerating unit, and 81.31% electrical power was saved.In addition, with the proposed sensorless VC method,both the MUT and the LM can work at i_d = 0 without a position sensor.