Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wa...Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wave arrival,the prediction time window was established at an interval of 0.5 s.12 P-wave characteristic parameters were selected as the model input parameters to construct the earthquake early warning(EEW)magnitude prediction model(SVM-HRM)for high-speed railway based on SVM.Findings–The magnitude prediction results of the SVM-HRM model were compared with the traditional magnitude prediction model and the high-speed railway EEW current norm.Results show that at the 3.0 s time window,themagnitude prediction error of the SVM-HRMmodel is obviously smaller than that of the traditionalτc method and Pd method.The overestimation of small earthquakes is obviously improved,and the construction of the model is not affected by epicenter distance,so it has generalization performance.For earthquake events with themagnitude range of 3–5,the single station realization rate of the SVM-HRMmodel reaches 95%at 0.5 s after the arrival of P-wave,which is better than the first alarm realization rate norm required by“The TestMethod of EEW andMonitoring Systemfor High-Speed Railway.”For earthquake eventswithmagnitudes ranging from3 to 5,5 to 7 and 7 to 8,the single station realization rate of the SVM-HRM model is at 0.5 s,1.5 s and 0.5 s after the P-wave arrival,respectively,which is better than the realization rate norm of multiple stations.Originality/value–At the latest,1.5 s after the P-wave arrival,the SVM-HRM model can issue the first earthquake alarm that meets the norm of magnitude prediction realization rate,which meets the accuracy and continuity requirements of high-speed railway EEW magnitude prediction.展开更多
To address the shortcomings in decision-making methods for ground motion threshold warning models in high-speed rail earthquake early warning systems(HSREEWs),we propose a dual judgement method and corresponding early...To address the shortcomings in decision-making methods for ground motion threshold warning models in high-speed rail earthquake early warning systems(HSREEWs),we propose a dual judgement method and corresponding early warning process for earthquake early warning decisions based on joint peak ground acceleration(PGA)and complex earthquake environmental risk evaluation(ERE)values.First,we analyse the characteristics of four complex earthquake environments based on the characteristics of high-speed rail(HSR)operating environments.Second,we establish an earthquake environmental risk evaluation index system and propose an adversarial interpretive structure modelling method-based complex earthquake situation evaluation model(AISM-based ESEM).The AISM method firstly evaluates the proximity by the TOPSIS(technique for order preference by similarity to an ideal solution)method,then effectively rank targets with fuzzy attributes through opposite hierarchical extraction rules without sacrificing system functionality.Since PGA can reflect the current size of earthquake energy,combining PGA thresholds with ESEM-derived values of ERE can effectively determine the risk status of each train and make decisions on the most appropriate alarm form and control measures for that status.Finally,case analysis results under the background of Wenchuan Earthquake show that the new early warning decisionmaking method accurately assesses environmental risks in affected areas and provides corresponding warning levels as a supplement to existing HSREEWs warning models.展开更多
The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current dome...The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current domestic monitoring system, most of the critical equipments and technologies are introduced from abroad;it is diseconomy, and also causes hidden danger. Realizing the localization of monitoring and early warning system is imperative. Based on the analysis of the present situation of urban rail transit operation safety at home and abroad, the paper proposes to use integrated technology to design basic framework of monitoring and warning system of urban rail train, and puts forward the critical technologies to realize the system. Compared with the existing monitoring system, the integrated monitoring system has the characteristics of wide monitoring range, clear division of labor, centralized management, coordination and integration operation and intelligent management, and embodies the concept of people-oriented. It has scientific significance for future construction of domestic Integrated Monitoring and Early Warning System (IMEWS) of urban rail transit.展开更多
The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not suc...The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.展开更多
基金supported by the National Natural Science Foundation of China(U2039209,U1534202,51408564)Natural Science Foundation of Heilongjiang Province(LH2021E119)the National Key Research and Development Program of China(2018YFC1504003).
文摘Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wave arrival,the prediction time window was established at an interval of 0.5 s.12 P-wave characteristic parameters were selected as the model input parameters to construct the earthquake early warning(EEW)magnitude prediction model(SVM-HRM)for high-speed railway based on SVM.Findings–The magnitude prediction results of the SVM-HRM model were compared with the traditional magnitude prediction model and the high-speed railway EEW current norm.Results show that at the 3.0 s time window,themagnitude prediction error of the SVM-HRMmodel is obviously smaller than that of the traditionalτc method and Pd method.The overestimation of small earthquakes is obviously improved,and the construction of the model is not affected by epicenter distance,so it has generalization performance.For earthquake events with themagnitude range of 3–5,the single station realization rate of the SVM-HRMmodel reaches 95%at 0.5 s after the arrival of P-wave,which is better than the first alarm realization rate norm required by“The TestMethod of EEW andMonitoring Systemfor High-Speed Railway.”For earthquake eventswithmagnitudes ranging from3 to 5,5 to 7 and 7 to 8,the single station realization rate of the SVM-HRM model is at 0.5 s,1.5 s and 0.5 s after the P-wave arrival,respectively,which is better than the realization rate norm of multiple stations.Originality/value–At the latest,1.5 s after the P-wave arrival,the SVM-HRM model can issue the first earthquake alarm that meets the norm of magnitude prediction realization rate,which meets the accuracy and continuity requirements of high-speed railway EEW magnitude prediction.
基金supported in part by the Key Scientific and Technological projects of Henan Province(Grant No.182102310004)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX19_0304)the scholarship of China Scholarship Council(Grant No.201906840033,202006840084).
文摘To address the shortcomings in decision-making methods for ground motion threshold warning models in high-speed rail earthquake early warning systems(HSREEWs),we propose a dual judgement method and corresponding early warning process for earthquake early warning decisions based on joint peak ground acceleration(PGA)and complex earthquake environmental risk evaluation(ERE)values.First,we analyse the characteristics of four complex earthquake environments based on the characteristics of high-speed rail(HSR)operating environments.Second,we establish an earthquake environmental risk evaluation index system and propose an adversarial interpretive structure modelling method-based complex earthquake situation evaluation model(AISM-based ESEM).The AISM method firstly evaluates the proximity by the TOPSIS(technique for order preference by similarity to an ideal solution)method,then effectively rank targets with fuzzy attributes through opposite hierarchical extraction rules without sacrificing system functionality.Since PGA can reflect the current size of earthquake energy,combining PGA thresholds with ESEM-derived values of ERE can effectively determine the risk status of each train and make decisions on the most appropriate alarm form and control measures for that status.Finally,case analysis results under the background of Wenchuan Earthquake show that the new early warning decisionmaking method accurately assesses environmental risks in affected areas and provides corresponding warning levels as a supplement to existing HSREEWs warning models.
文摘The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current domestic monitoring system, most of the critical equipments and technologies are introduced from abroad;it is diseconomy, and also causes hidden danger. Realizing the localization of monitoring and early warning system is imperative. Based on the analysis of the present situation of urban rail transit operation safety at home and abroad, the paper proposes to use integrated technology to design basic framework of monitoring and warning system of urban rail train, and puts forward the critical technologies to realize the system. Compared with the existing monitoring system, the integrated monitoring system has the characteristics of wide monitoring range, clear division of labor, centralized management, coordination and integration operation and intelligent management, and embodies the concept of people-oriented. It has scientific significance for future construction of domestic Integrated Monitoring and Early Warning System (IMEWS) of urban rail transit.
文摘The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.