China has the largest high-speed railway(HSR) system in the world, and it has gradually reshaped the urban network.The HSR system can be represented as different types of networks in terms of the nodes and various rel...China has the largest high-speed railway(HSR) system in the world, and it has gradually reshaped the urban network.The HSR system can be represented as different types of networks in terms of the nodes and various relationships(i.e.,linkages) between them. In this paper, we first introduce a general dual network model, including a physical network(PN)and a logical network(LN) to provide a comparative analysis for China’s high-speed rail network via complex network theory. The PN represents a layout of stations and rail tracks, and forms the basis for operating all trains. The LN is a network composed of the origin and destination stations of each high-speed train and the train flows between them. China’s high-speed railway(CHSR) has different topological structures and link strengths for PN in comparison with the LN. In the study, the community detection is used to analyze China’s high-speed rail networks and several communities are found to be similar to the layout of planned urban agglomerations in China. Furthermore, the hierarchies of urban agglomerations are different from each other according to the strength of inter-regional interaction and intra-regional interaction, which are respectively related to location and spatial development strategies. Moreover, a case study of the Yangtze River Delta shows that the hub stations have different resource divisions and are major contributors to the gap between train departure and arrival flows.展开更多
The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses re...The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses reconstruction by correlation of random noise propagated in the medium. Since wheel-rail interaction constitutes a source of such noise, correlation technique could be convenient for detection of rail defects using only passive sensors. Experiments have been carried out on a 2 m-long rail sample. Acoustic noise is generated in the sample at several positions. Direct comparison between an active emission-reception response and the estimated noise correlation function has confirmed the validity of the equivalence relation between them. The quality of the reconstruction is shown to be strongly related to the spatial distribution of the noise sources. High sensitivity of the noise-correlation functions to a local defect on the rail is also demonstrated. However, interpretation of the defect signature is more ambiguous than when using classical active responses. Application of a spatiotemporal Fourier transform on data recorded with variable sensor-defect distances has allowed overcoming this ambiguity.展开更多
WSNs (wireless sensor networks) can be used for railway infrastructure inspection and vehicle health monitoring. SHM (structural health monitoring) systems have a great potential to improve regular operation, secu...WSNs (wireless sensor networks) can be used for railway infrastructure inspection and vehicle health monitoring. SHM (structural health monitoring) systems have a great potential to improve regular operation, security and maintenance routine of structures with estimating the state of its health and detecting the changes that affect its performance. This is vital for the development, upgrading, and expansion of railway networks. The work presented in this paper aims at the possible use of acoustic sensors coupled with ZigBee modules for health monitoring of rails. The detection principle is based on acoustic noise correlation techniques. Experiments have been performed in a rail sample to confirm the validity of acoustic noise correlation techniques in the rail. A wireless communication platform prototype based on the ZigBee/IEEE 802.15.4 technology has been implemented and deployed on a rail sample. Once the signals from the structure are collected, sensor data are transmitted through a ZigBee solution to the processing unit.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFF0301400)the National Natural Science Foundation of China(Grant Nos.61671031,61722102,41722103,and 61961146005)。
文摘China has the largest high-speed railway(HSR) system in the world, and it has gradually reshaped the urban network.The HSR system can be represented as different types of networks in terms of the nodes and various relationships(i.e.,linkages) between them. In this paper, we first introduce a general dual network model, including a physical network(PN)and a logical network(LN) to provide a comparative analysis for China’s high-speed rail network via complex network theory. The PN represents a layout of stations and rail tracks, and forms the basis for operating all trains. The LN is a network composed of the origin and destination stations of each high-speed train and the train flows between them. China’s high-speed railway(CHSR) has different topological structures and link strengths for PN in comparison with the LN. In the study, the community detection is used to analyze China’s high-speed rail networks and several communities are found to be similar to the layout of planned urban agglomerations in China. Furthermore, the hierarchies of urban agglomerations are different from each other according to the strength of inter-regional interaction and intra-regional interaction, which are respectively related to location and spatial development strategies. Moreover, a case study of the Yangtze River Delta shows that the hub stations have different resource divisions and are major contributors to the gap between train departure and arrival flows.
文摘The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses reconstruction by correlation of random noise propagated in the medium. Since wheel-rail interaction constitutes a source of such noise, correlation technique could be convenient for detection of rail defects using only passive sensors. Experiments have been carried out on a 2 m-long rail sample. Acoustic noise is generated in the sample at several positions. Direct comparison between an active emission-reception response and the estimated noise correlation function has confirmed the validity of the equivalence relation between them. The quality of the reconstruction is shown to be strongly related to the spatial distribution of the noise sources. High sensitivity of the noise-correlation functions to a local defect on the rail is also demonstrated. However, interpretation of the defect signature is more ambiguous than when using classical active responses. Application of a spatiotemporal Fourier transform on data recorded with variable sensor-defect distances has allowed overcoming this ambiguity.
文摘WSNs (wireless sensor networks) can be used for railway infrastructure inspection and vehicle health monitoring. SHM (structural health monitoring) systems have a great potential to improve regular operation, security and maintenance routine of structures with estimating the state of its health and detecting the changes that affect its performance. This is vital for the development, upgrading, and expansion of railway networks. The work presented in this paper aims at the possible use of acoustic sensors coupled with ZigBee modules for health monitoring of rails. The detection principle is based on acoustic noise correlation techniques. Experiments have been performed in a rail sample to confirm the validity of acoustic noise correlation techniques in the rail. A wireless communication platform prototype based on the ZigBee/IEEE 802.15.4 technology has been implemented and deployed on a rail sample. Once the signals from the structure are collected, sensor data are transmitted through a ZigBee solution to the processing unit.