Increasing operating speed of modern passenger railway vehicles leads to higher thermal load onthe braking system. Organic composite brake pads are poor thermal conductors, hence frictionalheat is absorbed mainly by t...Increasing operating speed of modern passenger railway vehicles leads to higher thermal load onthe braking system. Organic composite brake pads are poor thermal conductors, hence frictionalheat is absorbed mainly by the disc. In this study three brake pad types were tested on thedynamometer. Metallic fibres, steel and copper, were introduced to the formulation of twomaterials. The third was a non-metallic material - a reference case. Dynamometer test comprisedemergency brake applications to determine the frictional characteristics of the materials andconstant-power drag braking to analyse the effect of metal fibres on temperature evolution,measured by six thermocouples embedded in the brake disc. Mean friction coefficient is analysedand discussed. It is concluded that conductive fibre in the friction material formulation mayinfluence its tribological characteristics. Despite high thermal conductivity, metal fibres in theconcentration tested in this study, did not reduce temperature of the brake disc.展开更多
A comprehensive modeling strategy for studying the thermomechanical tribological behaviors is proposed in this work.The wear degradation considering the influence of temperature(T)is predicted by Archard wear model wi...A comprehensive modeling strategy for studying the thermomechanical tribological behaviors is proposed in this work.The wear degradation considering the influence of temperature(T)is predicted by Archard wear model with the help of the UMESHMOTION subroutine and arbitrary Lagrangian–Eulerian(ALE)remeshing technique.Adopting the proposed method,the thermomechanical tribological behaviors of railway vehicle disc brake system composed of forged steel brake disc and Cu-based powder metallurgy(PM)friction block are studied systematically.The effectiveness of the proposed methodology is validated by experimental test on a self-designed scaled brake test bench from the perspectives of interface temperature,wear degradation,friction noise and vibration,and contact status evolution.This work can provide an effective way for the investigation of thermomechanical tribological behaviors in the engineering field.展开更多
A certain number of railway brake discs made of gray cast iron,showed the presence of small cracks only after a few thousand kilometers.To investigate main causes of a brake disc failure,numerical analysis was done by...A certain number of railway brake discs made of gray cast iron,showed the presence of small cracks only after a few thousand kilometers.To investigate main causes of a brake disc failure,numerical analysis was done by using ABAQUS software.Numerical analysis resulted from a physical model of heat flux in dependence of braking time.Physical model was applied considering all demands and presumptions given by industry representatives.展开更多
This paper shows the thermal and stress analysis of the worn brake disc for a Taurus class locomotive. The numerical analyses are carried out under the experimental testing program,Priifprogramm No.5,which is adjusted...This paper shows the thermal and stress analysis of the worn brake disc for a Taurus class locomotive. The numerical analyses are carried out under the experimental testing program,Priifprogramm No.5,which is adjusted for this type of locomotives by UIC CODE 541-3.The simulations results under mentioned program show the most unfavorable case of braking.The numerical analysis is done with the finite element method(FEM), using ABAQUS software.展开更多
基金supported by the National Science Centre of Poland (Research project No. 2017/27/B/ST8/01249)
文摘Increasing operating speed of modern passenger railway vehicles leads to higher thermal load onthe braking system. Organic composite brake pads are poor thermal conductors, hence frictionalheat is absorbed mainly by the disc. In this study three brake pad types were tested on thedynamometer. Metallic fibres, steel and copper, were introduced to the formulation of twomaterials. The third was a non-metallic material - a reference case. Dynamometer test comprisedemergency brake applications to determine the frictional characteristics of the materials andconstant-power drag braking to analyse the effect of metal fibres on temperature evolution,measured by six thermocouples embedded in the brake disc. Mean friction coefficient is analysedand discussed. It is concluded that conductive fibre in the friction material formulation mayinfluence its tribological characteristics. Despite high thermal conductivity, metal fibres in theconcentration tested in this study, did not reduce temperature of the brake disc.
基金financial support of the National Natural Science Foundation of China(52105160 and U22A20181)the Natural Science Foundation of Sichuan Province(2022NSFSC1877)+1 种基金China Postdoctoral Science Foundation(2022M720537)the Fundamental Research Funds for the Central Universities(2682021CX028).
文摘A comprehensive modeling strategy for studying the thermomechanical tribological behaviors is proposed in this work.The wear degradation considering the influence of temperature(T)is predicted by Archard wear model with the help of the UMESHMOTION subroutine and arbitrary Lagrangian–Eulerian(ALE)remeshing technique.Adopting the proposed method,the thermomechanical tribological behaviors of railway vehicle disc brake system composed of forged steel brake disc and Cu-based powder metallurgy(PM)friction block are studied systematically.The effectiveness of the proposed methodology is validated by experimental test on a self-designed scaled brake test bench from the perspectives of interface temperature,wear degradation,friction noise and vibration,and contact status evolution.This work can provide an effective way for the investigation of thermomechanical tribological behaviors in the engineering field.
文摘A certain number of railway brake discs made of gray cast iron,showed the presence of small cracks only after a few thousand kilometers.To investigate main causes of a brake disc failure,numerical analysis was done by using ABAQUS software.Numerical analysis resulted from a physical model of heat flux in dependence of braking time.Physical model was applied considering all demands and presumptions given by industry representatives.
文摘This paper shows the thermal and stress analysis of the worn brake disc for a Taurus class locomotive. The numerical analyses are carried out under the experimental testing program,Priifprogramm No.5,which is adjusted for this type of locomotives by UIC CODE 541-3.The simulations results under mentioned program show the most unfavorable case of braking.The numerical analysis is done with the finite element method(FEM), using ABAQUS software.