The Lanzhou-Urumqi high-speed railway is an important part of the railway network connecting Gansu,Qinghai,and Xinjiang,and it is of far-reaching significance in facilitating China’s western development.An accessibil...The Lanzhou-Urumqi high-speed railway is an important part of the railway network connecting Gansu,Qinghai,and Xinjiang,and it is of far-reaching significance in facilitating China’s western development.An accessibility model and a double difference model were built to analyze the impact of the Lanzhou-Urumqi high-speed railway on regional accessibility and economic development of the areas along the line before(2012-2014)and after(2017-2019)its opening.The results show that the regional accessibility remains unchanged before and after the operation of this railway line.However,there is a spatial difference in improvement,that of central cities being better.The opening of the high-speed railway is conducive to driving the overall economic development of the region and promoting the comprehensive and coordinated development of regional economies.展开更多
According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load...According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.展开更多
Using China’s county-level panel data of 2007-2016,this paper verifies the existence of agglomeration shadows from an infrastructure development perspective.With high-speed railway(HSR)launch as a quasi-natural exper...Using China’s county-level panel data of 2007-2016,this paper verifies the existence of agglomeration shadows from an infrastructure development perspective.With high-speed railway(HSR)launch as a quasi-natural experiment,we find that the launch of HSR lines was followed by a decrease in GDP per capita of counties along the route by 2.6 percentage points.This conclusion remains valid after a series of robustness tests and the treatment of potential endogeneity problem.Mechanism analysis suggests that such effect is the most significant for counties within a distance of 97 to 195 km to the nearest central city,which is a manifestation of the“agglomeration shadows.”We also uncover that HSR would spur economic growth for counties with favorable endowments.However,HSR also has a significant negative impact on permanent population in counties.When change in permanent population is taken into account,HSR’s negative impact on the countywide economy becomes smaller.Shrinking permanent population in counties after HSR launch is a manifestation of such agglomeration shadows.HSR has facilitated the free flow of population.These findings point to the possibility that HSR may have induced regional economic equilibrium amid agglomeration.展开更多
In this study,an improved delayed detached eddy simulation(IDDES)method based on the shear-stress transport(SST)k-ωturbulence model has been used to investigate the underbody flow characteristics of a high-speed trai...In this study,an improved delayed detached eddy simulation(IDDES)method based on the shear-stress transport(SST)k-ωturbulence model has been used to investigate the underbody flow characteristics of a high-speed train operating at lower temperatures with Reynolds number Re=1.85×10^(6).The accuracy of the numerical method has been validated by wind tunnel tests.The aerodynamic drag of the train,pressure distribution on the surface of the train,the flow around the vehicle,and the wake flow are compared for four temperature values:+15℃,0℃,−15℃,and−30℃.It was found that lower operating t emperatures significantly increased the aerodynamic drag force of the train.The drag overall at low temperatures increased by 5.3%(0℃),11.0%(−15℃),and 17.4%(−30℃),respectively,relative to the drag at+15℃.In addition,the low temperature e nhances the positive and negative pressures around and on the surface of the car body,raising the peak positive and negative pressure values in areas susceptible to impingement flow and to rapid changes in flow velocity.The range of train-induced winds around the car body is significantly reduced,the distribution area of vorticity moves backwards,and the airflow velocity in the bogie cavity is significantly increased.At the same time,the temperature causes a significant velocity reduction in the wake flow.It can be seen that the temperature reduction can seriously disturb the normal operation of the train while increasing the aerodynamic drag and energy consumption,and significantly interfering with the airflow characteristics around the car body.展开更多
文摘The Lanzhou-Urumqi high-speed railway is an important part of the railway network connecting Gansu,Qinghai,and Xinjiang,and it is of far-reaching significance in facilitating China’s western development.An accessibility model and a double difference model were built to analyze the impact of the Lanzhou-Urumqi high-speed railway on regional accessibility and economic development of the areas along the line before(2012-2014)and after(2017-2019)its opening.The results show that the regional accessibility remains unchanged before and after the operation of this railway line.However,there is a spatial difference in improvement,that of central cities being better.The opening of the high-speed railway is conducive to driving the overall economic development of the region and promoting the comprehensive and coordinated development of regional economies.
基金financially supported by the State Key Development Program for Basic Research of China(973 Program,Grant No.2013CB036204)
文摘According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.
文摘Using China’s county-level panel data of 2007-2016,this paper verifies the existence of agglomeration shadows from an infrastructure development perspective.With high-speed railway(HSR)launch as a quasi-natural experiment,we find that the launch of HSR lines was followed by a decrease in GDP per capita of counties along the route by 2.6 percentage points.This conclusion remains valid after a series of robustness tests and the treatment of potential endogeneity problem.Mechanism analysis suggests that such effect is the most significant for counties within a distance of 97 to 195 km to the nearest central city,which is a manifestation of the“agglomeration shadows.”We also uncover that HSR would spur economic growth for counties with favorable endowments.However,HSR also has a significant negative impact on permanent population in counties.When change in permanent population is taken into account,HSR’s negative impact on the countywide economy becomes smaller.Shrinking permanent population in counties after HSR launch is a manifestation of such agglomeration shadows.HSR has facilitated the free flow of population.These findings point to the possibility that HSR may have induced regional economic equilibrium amid agglomeration.
基金supported by the National Natural Science Foundation of China(Nos.52172363 and 52202429)the National Key Research and Development Program of China(No.2020YFF0304103-03)the Independent Exploration of Graduate Students of Central South University(No.2019zzts268),China.
文摘In this study,an improved delayed detached eddy simulation(IDDES)method based on the shear-stress transport(SST)k-ωturbulence model has been used to investigate the underbody flow characteristics of a high-speed train operating at lower temperatures with Reynolds number Re=1.85×10^(6).The accuracy of the numerical method has been validated by wind tunnel tests.The aerodynamic drag of the train,pressure distribution on the surface of the train,the flow around the vehicle,and the wake flow are compared for four temperature values:+15℃,0℃,−15℃,and−30℃.It was found that lower operating t emperatures significantly increased the aerodynamic drag force of the train.The drag overall at low temperatures increased by 5.3%(0℃),11.0%(−15℃),and 17.4%(−30℃),respectively,relative to the drag at+15℃.In addition,the low temperature e nhances the positive and negative pressures around and on the surface of the car body,raising the peak positive and negative pressure values in areas susceptible to impingement flow and to rapid changes in flow velocity.The range of train-induced winds around the car body is significantly reduced,the distribution area of vorticity moves backwards,and the airflow velocity in the bogie cavity is significantly increased.At the same time,the temperature causes a significant velocity reduction in the wake flow.It can be seen that the temperature reduction can seriously disturb the normal operation of the train while increasing the aerodynamic drag and energy consumption,and significantly interfering with the airflow characteristics around the car body.