期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
New technologies for high-risk tunnel construction in GuiyangGuangzhou high-speed railway 被引量:2
1
作者 Yubao Zhao Shougen Chen +1 位作者 Xinrong Tan Ma Hui 《Journal of Modern Transportation》 2013年第4期258-265,共8页
Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- ti... Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future. 展开更多
关键词 Tunneling engineering high-speed railway new technologies High-risk tunnel
下载PDF
Numerical analysis of high‑speed railway slab tracks using calibrated and validated 3D time‑domain modelling
2
作者 A.F.Esen O.Laghrouche +4 位作者 P.K.Woodward D.Medina‑Pineda Q.Corbisez J.Y.Shih D.P.Connolly 《Railway Engineering Science》 EI 2024年第1期36-58,共23页
Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a ... Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds. 展开更多
关键词 high-speed railways Slab track new ballastless track Ballasted track Critical speeds Finite element modelling Calibration of numerical models
下载PDF
Dynamic behavior of new cutting subgrade structure of expensive soil under train loads coupling with service environment 被引量:16
3
作者 QIU Ming-ming YANG Guo-lin +3 位作者 SHEN Quan YANG Xiao WANG Gang LIN Yu-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期875-890,共16页
Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. ... Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil. 展开更多
关键词 high-speed railway FULL-SCALE model testing dynamic response expansive SOIL service environment new SUBGRADE structure
下载PDF
Deep learning based Doppler frequency offset estimation for 5G-NR downlink in HSR scenario
4
作者 YANG Lihua WANG Zenghao +1 位作者 ZHANG Jie JIANG Ting 《High Technology Letters》 EI CAS 2022年第2期115-121,共7页
In the fifth-generation new radio(5G-NR) high-speed railway(HSR) downlink,a deep learning(DL) based Doppler frequency offset(DFO) estimation scheme is proposed by using the back propagation neural network(BPNN).The pr... In the fifth-generation new radio(5G-NR) high-speed railway(HSR) downlink,a deep learning(DL) based Doppler frequency offset(DFO) estimation scheme is proposed by using the back propagation neural network(BPNN).The proposed method mainly includes pre-training,training,and estimation phases,where the pre-training and training belong to the off-line stage,and the estimation is the online stage.To reduce the performance loss caused by the random initialization,the pre-training method is employed to acquire a desirable initialization,which is used as the initial parameters of the training phase.Moreover,the initial DFO estimation is used as input along with the received pilots to further improve the estimation accuracy.Different from the training phase,the initial DFO estimation in pre-training phase is obtained by the data and pilot symbols.Simulation results show that the mean squared error(MSE) performance of the proposed method is better than those of the available algorithms,and it has acceptable computational complexity. 展开更多
关键词 fifth-generation new radio(5G-NR) high-speed railway(HSR) deep learning(DL) back propagation neural network(BPNN) Doppler frequency offset(DFO)estimation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部