期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A computational method for post-construction settlement of high-speed railway bridge pile foundation considering soil creep effect 被引量:12
1
作者 冯胜洋 魏丽敏 +1 位作者 何重阳 何群 《Journal of Central South University》 SCIE EI CAS 2014年第7期2921-2927,共7页
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th... Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation. 展开更多
关键词 high-speed railway bridge pile foundation post-construction settlement Mesri creep model simplified computational method
下载PDF
Settlement Characteristics of Cement Fly-Ash GravelPile-Plate Composite Foundation of High-Speed Railway
2
作者 朱明 冷旷代 马建林 《Journal of Southwest Jiaotong University(English Edition)》 2010年第1期13-18,共6页
Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the ... Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded. 展开更多
关键词 high-speed railway CFG pile-plate composite foundation Settlement characteristics Field test
下载PDF
Model tests on XCC-piled embankment under dynamic train load of high-speed railways 被引量:6
3
作者 Niu Tingting Liu Hanlong +1 位作者 Ding Xuanming Zheng Changjie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期581-594,共14页
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under... Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder. 展开更多
关键词 piled embankment model test dynamic train load of high-speed railways XCC-pile M-shaped wave
下载PDF
Analysis of ground vibrations induced by high-speed train moving on pile-supported subgrade using three-dimensional FEM 被引量:9
4
作者 GAO Guang-yun BI Jun-wei +1 位作者 CHEN Qing-sheng CHEN Run-min 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2455-2464,共10页
The pile-supported subgrade has been widely used in high-speed railway construction in China.To investigate the ground vibrations of such composite foundation subjected to moving loads induced by high-speed trains(HST... The pile-supported subgrade has been widely used in high-speed railway construction in China.To investigate the ground vibrations of such composite foundation subjected to moving loads induced by high-speed trains(HSTs),three-dimensional(3D)finite element method(FEM)models involving the pile,pile cap and cushion are established.Validation of the proposed model is conducted through comparison of model predictions with the field measurements.On this basis,ground vibrations generated by HSTs under different train speeds as well as the ground vibration attenuation with the distance away from the track centerline are investigated.In addition,the effects of piles and pile elastic modulus on ground vibrations are well studied.Results show that the pile-reinforcement of the subgrade could significantly contribute to the reduction of ground vibrations.In particular,the increase of elastic modulus of pile could lead to consistent reduction of ground vibrations.However,when the pile elastic modulus is beyond 10 GPa,this benefit of pile-reinforcement on vibration isolation can hardly be increased further. 展开更多
关键词 high-speed railway ground vibrations 3D FEM pile-supported subgrade pile elastic modulus
下载PDF
Review of research on high-speed railway subgrade settlement in soft soil area 被引量:12
5
作者 Shunhua Zhou Binglong Wang Yao Shan 《Railway Engineering Science》 2020年第2期129-145,共17页
Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibil... Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibility and low permeability of soft soil,the post-construction settlement of the subgrade is extremely difficult to control in these regions,which seriously threatens the operation safety of high-speed trains.In this work,the significant issues of high-speed railway subgrades in soft soil regions are discussed.The theoretical and experimental studies on foundation treatment methods for ballasted and ballastless tracks are reviewed.The settlement evolution and the settlement control effect of different treatment methods are highlighted.Control technologies of subgrade differential settlement are subsequently briefly presented.Settlement calculation algorithms of foundations reinforced by different treatment methods are discussed in detail.The defects of existing prediction methods and the challenges faced in their practical applications are analyzed.Furthermore,the guidance on future improvement in control theories and technologies of subgrade settlement for high-speed railway lines and the corresponding challenges are provided. 展开更多
关键词 high-speed railway SUBGRADE Soft soil foundation pile-supported embankment Soil arching Settlement prediction
下载PDF
Pile foundation of high-speed railway undergoing repeated groundwater reductions 被引量:3
6
作者 Xue-cheng BIAN Lei FU +1 位作者 Chuang ZHAO Yun-min CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第4期277-295,共19页
Long-pile groups of railway foundation undergo excessive settlements after groundwater reductions,which may exceed the settlement limit and threaten the safe operation of high-speed trains.However,the effect of ground... Long-pile groups of railway foundation undergo excessive settlements after groundwater reductions,which may exceed the settlement limit and threaten the safe operation of high-speed trains.However,the effect of groundwater reduction on a long-pile group(greater than 20 m in length)has not been fully understood,especially in respect of repeated reductions.In this study,a centrifuge test was conducted to investigate the responses of pile groups in silty soils subjected to repeated falls in the water table.The behavior of the piles was discussed based both on the test and on 3D numerical analyses.With the derived coef-ficientβfor the axial force evaluation of the pile,the effect of lowering the water table on the railway pile foundation could be seen.Results of the tests and numerical analyses indicated that the water table decline significantly increased the down-drag and axial force of the pile,causing significant settlement.A longer pile presented a larger axial force at the neutral point.Nevertheless,the incremental percentage of the axial force decreased with increasing pile length with the same water table reduction.Because of group effect,the displacement of soil next to the center pile was smaller than that near the corner piles and showed a similar trend as the axial force of the pile.As the water table fell,the static load ratio affecting the progress of pile settlement increased dis-advantageously,possibly inducing excessive pile settlement.A design method for railway pile foundations taking account of lowering groundwater was proposed with an example application,which provided a reference for similar projects. 展开更多
关键词 high-speed railway pile foundation settlement Centrifuge testing Numerical modelling Groundwater declining Drag load
原文传递
Model test of the group piles foundation of a high-speed railway bridge in mined-out area 被引量:2
7
作者 Xin LIANG Qian-gong CHENG +1 位作者 Jiu-jiang WU Jian-ming CHEN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第4期488-498,共11页
The research on the mechanism of pile-soil-cap-goaf interaction and settlement of high-speed railway bridge located in mined-out area is still relatively rare. By taking the pile group of Guanshandi bridge foundation ... The research on the mechanism of pile-soil-cap-goaf interaction and settlement of high-speed railway bridge located in mined-out area is still relatively rare. By taking the pile group of Guanshandi bridge foundation in Hefei- Fuzhou high-speed railway as the prototype, a model test is carried out. According to the similarity theory, the similar constant is derived and the similar model material is determined. Meanwhile, three types of data including the bearing behavior of piles, and the settlement law, and soil among piles are investigated. It can be found that: the influence of goaf on the bearing capacity of pile is inversely to the loading degree, the larger of loading degree, the smaller impact of goaf on the bearing capacity. There is no negative side friction can been found in pile body and the degree of downward tendency for the barycenter of side friction layout is obvious for piles in goaf. Although the bearing ratio of soil resistance under cap is relatively large, the cap effect is suggested be ignored considering the characteristic of goaf. There is a maximum critical value for the uneven settlement of pile group in goaf, and when the value is reached, the uneven settlement stop growing anymore. In addition, the formula for calculating bearing capacity and settlement of pile group in goaf based on test results, theory analysis and related standard is established. 展开更多
关键词 high-speed railway mined-out areas GOAF group piles foundation physical model test bearing capacity settlement
原文传递
Exothermic process of cast-in-place pile foundation and its thermal agitation of the frozen ground under a long dry bridge on the Qinghai-Tibet Railway 被引量:5
8
作者 Ya-ping WU Jian GUO +2 位作者 Chun-xiang GUO Wei MA Xiao-jun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第2期88-96,共9页
A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry ... A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry bridge and its harm to the stability of nearby frozen ground.We present 3D heat conduction functions of a concrete pile and of frozen ground with related boundaries.Our analysis is based on the theory of heat conduction and the exponent law describing the adiabatic temperature rise caused by hydration heat.Results under continuous and initial conditions were combined to establish a finite element model of a CIP pile-frozen ground system for a dry bridge under actual field conditions in cold regions.Numerical results indicated that the process could effectively simulate the exothermic process of CIP pile foundation.Thermal disturbance to frozen ground under a long dry bridge caused by the casting temperature and hydration heat of CIP piles was substantial and long-lasting.The simulated thermal analysis results agreed with field measurements and some significant rules relating to the problem were deduced and conclusions reached. 展开更多
关键词 Exothermic process of hydration heat Cast-in-place (CIP) pile foundation Dry bridge Thermal agitation Frozen ground Qinghai-Tibet railway
原文传递
Simplified analytical solution for stress concentration ratio of piled embankments incorporating pile–soil interaction 被引量:1
9
作者 Qiang Luo Ming Wei +1 位作者 Qingyuan Lu Tengfei Wang 《Railway Engineering Science》 2021年第2期199-210,共12页
Piled embankments have been extensively used for high-speed rail over soft soils because of their effectiveness in minimizing differential settlement and shortening the construction period.Stress concentration ratio,d... Piled embankments have been extensively used for high-speed rail over soft soils because of their effectiveness in minimizing differential settlement and shortening the construction period.Stress concentration ratio,defined as the ratio of vertical stress carried by pile heads(or pile caps if applicable)to that by adjacent soils,is a fundamental parameter in the design of piled embankments.In view of the complicated load transfer mechanism in the framework of embankment system,this paper presents a simplified analytical solution for the stress concentration ratio of rigid pile-supported embankments.In the derivation,the effects of cushion stiffness,pile–soil interaction,and pile penetration behavior are considered and examined.A modified linearly elastic-perfectly plastic model was used to analyze the mechanical response of a rigid pile–soil system.The analytical model was verified against field data and the results of numerical simulations from the literature.According to the proposed method,the skin friction distribution,pile–soil relative displacement,location of neural point,and differential settlement between the pile head(or cap)and adjacent soils can be determined.This work serves as a fast algorithm for initial and reasonable approximation of stress concentration ratio on the design aspects of piled embankments. 展开更多
关键词 piled embankments pile-soil interaction pile penetration CUSHION Rigid pile high-speed railway
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部