The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different...The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing longpole M C carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.展开更多
The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the p...The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter.展开更多
For the purpose to facilitate development of high-speed Spindle Units (SUs) running on rolling bearings, we have developed a beam element model, algorithms, and software for computer analysis of thermal characteristic...For the purpose to facilitate development of high-speed Spindle Units (SUs) running on rolling bearings, we have developed a beam element model, algorithms, and software for computer analysis of thermal characteristics of SUs. The thermal model incorporates a model of heat generation in rolling bearings, a model of heat transfer from bearings, and models for estimation of temperature and temperature deformations of SU elements. We have carried out experimental test and made quantitative evaluation of the effect of operation conditions on friction and thermal characteristics of the SUs of grinding and turning machines of typical structures. It is found that the operation conditions make stronger effect on SU temperatures when rpm increases. A comparison between the results of analysis and experiment proves their good mutual correspondence and allows us to recommend application of the models and software developed for design and research of high-speed SUs running on rolling bearings.展开更多
During strip casting,the thickness deviation of casting strip directly affects the quality of the hot-rolled sheet because the casting strip needs to be rolled only once.To accurately control the gap between casting r...During strip casting,the thickness deviation of casting strip directly affects the quality of the hot-rolled sheet because the casting strip needs to be rolled only once.To accurately control the gap between casting rolls and reduce the thickness deviation of the casting strip,a conceptual design of a prestressed twin-roll caster is proposed herein;this caster involves the setting of a constant pressure balancing cylinder between the chocks of two casting rolls.The balancing cylinder hydraulic system adopts a three-way servo valve that controls the hydraulic cylinder.The parameters of the hydraulic power components are determined using the principle of optimal power matching,and the hydraulic system model of the balancing cylinder is thus established.The dynamic analysis and simulation of the hydraulic system are performed using finite element model to obtain relevant evaluation indexes.Finally,the hydraulic system is corrected using proportional-integral-derivative (PID) correction to achieve a well-controlled effect.Thus,the engineering requirements of the strip casting process can be met.展开更多
The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors af...The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.展开更多
The twin roll caster for aluminum alloys has many a dv antages. For example, rapid solidification, low equipment cost, and low running cost, etc. However, the twin roll caster has some disadvantages. They are slow c a...The twin roll caster for aluminum alloys has many a dv antages. For example, rapid solidification, low equipment cost, and low running cost, etc. However, the twin roll caster has some disadvantages. They are slow c asting speed and limitation of alloys. In the conventional twin roll caster, the casting speed is slower than 10 m/min. Aluminum alloys, which freezing range is wide, can not be cast. In the present study, break through of these problems wa s tried, and a new type twin roll caster was devised. A vertical type twin roll caster equipped with a nozzle was devised in order to cast aluminum strips at the speeds higher than 60 m/min. Characteristic features of this caster were vertical type, use of copper rolls, low separating force (n o operation of rolling), no use of lubricant, and equipment of the nozzle. In th e high speed roll casting, feed of molten metal of the vertical type twin roll c aster was easier than that of the conventional horizontal type caster. The use o f the copper rolls made cooling rate higher. The low separating force and the us e of the copper rolls prevented sticking of the strip to the roll. The lubricant was not needed, as the sticking of the strip to the roll did not occur. No use of the lubricant was useful to increase the cooling rate and casting speed of th e strip. The nozzle was used in order to improve contact condition (heat transfe r) between the melt and the rolls by hydrostatic pressure. In the twin roll cast er of the present study, many devices were done to improve the cooling condition of the strip in order to increase the casting speed. It was said that the roll casting of A5182 was very difficult, as freezing zone of A5182 was very wide. However, A5182 strip could be cast at high speeds up to 120 m/min using the twin roll caster of the present study. The microstructure of the strip cast using the conventional type twin roll caster is columnar structu re. The microstructure of the strip cast using the twin roll caster of the prese nt study was not columnar but equiaxed structure. It is said that mechanical pro perties of the strip cast using the twin roll caster is cheaper than that of the strip made from DC casting. However, the mechanical properties of the strip cas t using the twin roll caster in the present study were almost same as the proper ties of the strip made from DC casting. The thickness of the strip cast using th e twin roll caster of the present study was from 1.5 mm to 2.5 mm, and this thic kness was thinner than that of the strip cast using the conventional twin roll c aster. Semisolid roll casting was tried in order to increase the roll speed more and mo re. The twin roll caster of the present study was equipped with a cooling slope in order to make semisolid slurry. The cooling slope was the simplest process to make the semisolid slurry. Solid rate of the semisolid slurry was about 10%. Th e casting speed increased up to 180 m/min by the effect of semisolid casting. Me chanical properties were improved by the semisolid casting, too.展开更多
High-speed rolling (HSR) is known to improve the workability of Mg alloys significantly, which makes it possible to impose a large reduction in a single pass without fracture. In the present study, dynamic recrystal...High-speed rolling (HSR) is known to improve the workability of Mg alloys significantly, which makes it possible to impose a large reduction in a single pass without fracture. In the present study, dynamic recrystallization (DRX) behavior and microstructural and textural variations of Mg alloy AZ31 dur-ing a HSR process were investigated by conducting rolling with different imposed reductions in the range of 20%-80% at a high rolling speed of 470 m/min and 400℃. High-strain-rate deformation during HSR suppresses dislocation slips but promotes twinning, which results in the formation of numer-ous twins of several types, i.e., {10-12} extension twins, {10-11} and {10-13} contraction twins, and {10-11}-{10-12} double twins. After twinning, high strain energy is accumulated in twin bands because their crystallographic orientations are favorable for basal slips, leading to subsequent DRX at the twin bands. Accordingly, twinning activation and twinning-induced DRX behavior play crucial roles in accommodating plastic deformation during HSR and in varying microstructure and texture of the high- speed-rolled (HSRed) sheets. Area fraction of fine DRXed grains formed at the twin bands increases with increasing rolling reduction, which is attributed to the combined effects of increased strain, strain rate, and deformation temperature and a decreased critical strain for DRX. Size, internal strain, and texture intensity of the DRXed grains are smaller than those of unDRXed grains. Therefore, as rolling reduction increases, average grain size, stored internal energy, microstructural inhomogeneity, and basal texture intensity of the HSRed sheets gradually decrease owing to an increase in the area fraction of the DRXed grains.展开更多
The dynamic deformation behaviors and resultant microstructural variations during high-speed rolling(HSR) of a Mg alloy with a non-basal texture are investigated. To this end, AZ31 alloy samples in which the basal pol...The dynamic deformation behaviors and resultant microstructural variations during high-speed rolling(HSR) of a Mg alloy with a non-basal texture are investigated. To this end, AZ31 alloy samples in which the basal poles of most grains are predominantly aligned parallel to the transverse direction(TD) are subjected to hot rolling with different reductions at a rolling speed of 470 m/min. The initial grains with a TD texture are favorable for {10–12} twinning under compression along the normal direction(ND); as a result, {10–12} twins are extensively formed in the material during HSR, and this consequently results in a drastic evolution of texture from the TD texture to the ND texture and a reduction in the grain size. After the initial grains are completely twinned by the {10–12} twinning mechanism, {10–11} contraction twins and {10–11}-{10–12} double twins are formed in the {10–12} twinned grains by further deformation.Since the contraction twins and double twins have crystallographic orientations that are favorable for basal slip during HSR, dislocations easily accumulate in these twins and fine recrystallized grains nucleate in the twins to reduce the increased internal strain energy. Until a rolling reduction of 20%, {10–12}twinning is the main mechanism governing the microstructural change during HSR, and subsequently,the microstructural evolution is dominated by the formation of contraction twins and double twins and the dynamic recrystallization in these twins. With an increase in the rolling reduction, the average grain size and internal strain energy of the high-speed-rolled(HSRed) samples decrease and the basal texture evolves from the TD texture to the ND texture more effectively. As a result, the 80% HSRed sample, which is subjected to a large strain at a high strain rate in a single rolling pass, exhibits a fully recrystallized microstructure consisting of equiaxed fine grains and has an ND basal texture without a TD texture component.展开更多
The Beijing-Shanghai railway, linking the two biggest cities in China, is the busiest railway in the world, having an annual cargo capacity of 120 million tons and transporting 30 million passengers. Connecting two ec...The Beijing-Shanghai railway, linking the two biggest cities in China, is the busiest railway in the world, having an annual cargo capacity of 120 million tons and transporting 30 million passengers. Connecting two economically developed regions-the Yangtze Delta and Circum-Bohai (sea) area-the railway展开更多
基金Project supported by"863"Project (2006AA03Z532)the National Natural Science Foundation of China (NSFC 50341050)
文摘The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing longpole M C carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.
基金Project(BX2021379)supported by the China National Postdoctoral Program for Innovative Talents。
文摘The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter.
文摘For the purpose to facilitate development of high-speed Spindle Units (SUs) running on rolling bearings, we have developed a beam element model, algorithms, and software for computer analysis of thermal characteristics of SUs. The thermal model incorporates a model of heat generation in rolling bearings, a model of heat transfer from bearings, and models for estimation of temperature and temperature deformations of SU elements. We have carried out experimental test and made quantitative evaluation of the effect of operation conditions on friction and thermal characteristics of the SUs of grinding and turning machines of typical structures. It is found that the operation conditions make stronger effect on SU temperatures when rpm increases. A comparison between the results of analysis and experiment proves their good mutual correspondence and allows us to recommend application of the models and software developed for design and research of high-speed SUs running on rolling bearings.
文摘During strip casting,the thickness deviation of casting strip directly affects the quality of the hot-rolled sheet because the casting strip needs to be rolled only once.To accurately control the gap between casting rolls and reduce the thickness deviation of the casting strip,a conceptual design of a prestressed twin-roll caster is proposed herein;this caster involves the setting of a constant pressure balancing cylinder between the chocks of two casting rolls.The balancing cylinder hydraulic system adopts a three-way servo valve that controls the hydraulic cylinder.The parameters of the hydraulic power components are determined using the principle of optimal power matching,and the hydraulic system model of the balancing cylinder is thus established.The dynamic analysis and simulation of the hydraulic system are performed using finite element model to obtain relevant evaluation indexes.Finally,the hydraulic system is corrected using proportional-integral-derivative (PID) correction to achieve a well-controlled effect.Thus,the engineering requirements of the strip casting process can be met.
文摘The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.
文摘The twin roll caster for aluminum alloys has many a dv antages. For example, rapid solidification, low equipment cost, and low running cost, etc. However, the twin roll caster has some disadvantages. They are slow c asting speed and limitation of alloys. In the conventional twin roll caster, the casting speed is slower than 10 m/min. Aluminum alloys, which freezing range is wide, can not be cast. In the present study, break through of these problems wa s tried, and a new type twin roll caster was devised. A vertical type twin roll caster equipped with a nozzle was devised in order to cast aluminum strips at the speeds higher than 60 m/min. Characteristic features of this caster were vertical type, use of copper rolls, low separating force (n o operation of rolling), no use of lubricant, and equipment of the nozzle. In th e high speed roll casting, feed of molten metal of the vertical type twin roll c aster was easier than that of the conventional horizontal type caster. The use o f the copper rolls made cooling rate higher. The low separating force and the us e of the copper rolls prevented sticking of the strip to the roll. The lubricant was not needed, as the sticking of the strip to the roll did not occur. No use of the lubricant was useful to increase the cooling rate and casting speed of th e strip. The nozzle was used in order to improve contact condition (heat transfe r) between the melt and the rolls by hydrostatic pressure. In the twin roll cast er of the present study, many devices were done to improve the cooling condition of the strip in order to increase the casting speed. It was said that the roll casting of A5182 was very difficult, as freezing zone of A5182 was very wide. However, A5182 strip could be cast at high speeds up to 120 m/min using the twin roll caster of the present study. The microstructure of the strip cast using the conventional type twin roll caster is columnar structu re. The microstructure of the strip cast using the twin roll caster of the prese nt study was not columnar but equiaxed structure. It is said that mechanical pro perties of the strip cast using the twin roll caster is cheaper than that of the strip made from DC casting. However, the mechanical properties of the strip cas t using the twin roll caster in the present study were almost same as the proper ties of the strip made from DC casting. The thickness of the strip cast using th e twin roll caster of the present study was from 1.5 mm to 2.5 mm, and this thic kness was thinner than that of the strip cast using the conventional twin roll c aster. Semisolid roll casting was tried in order to increase the roll speed more and mo re. The twin roll caster of the present study was equipped with a cooling slope in order to make semisolid slurry. The cooling slope was the simplest process to make the semisolid slurry. Solid rate of the semisolid slurry was about 10%. Th e casting speed increased up to 180 m/min by the effect of semisolid casting. Me chanical properties were improved by the semisolid casting, too.
基金supported and by the National Research Foundation of Korea(NRF) grants funded by the Korean government(MSIP,South Korea)(No.2016R1C1B2012140 and No.2017R1A4A1015628)by the Korean Institute of Industrial Technology(KITECH JA180001)
文摘High-speed rolling (HSR) is known to improve the workability of Mg alloys significantly, which makes it possible to impose a large reduction in a single pass without fracture. In the present study, dynamic recrystallization (DRX) behavior and microstructural and textural variations of Mg alloy AZ31 dur-ing a HSR process were investigated by conducting rolling with different imposed reductions in the range of 20%-80% at a high rolling speed of 470 m/min and 400℃. High-strain-rate deformation during HSR suppresses dislocation slips but promotes twinning, which results in the formation of numer-ous twins of several types, i.e., {10-12} extension twins, {10-11} and {10-13} contraction twins, and {10-11}-{10-12} double twins. After twinning, high strain energy is accumulated in twin bands because their crystallographic orientations are favorable for basal slips, leading to subsequent DRX at the twin bands. Accordingly, twinning activation and twinning-induced DRX behavior play crucial roles in accommodating plastic deformation during HSR and in varying microstructure and texture of the high- speed-rolled (HSRed) sheets. Area fraction of fine DRXed grains formed at the twin bands increases with increasing rolling reduction, which is attributed to the combined effects of increased strain, strain rate, and deformation temperature and a decreased critical strain for DRX. Size, internal strain, and texture intensity of the DRXed grains are smaller than those of unDRXed grains. Therefore, as rolling reduction increases, average grain size, stored internal energy, microstructural inhomogeneity, and basal texture intensity of the HSRed sheets gradually decrease owing to an increase in the area fraction of the DRXed grains.
基金supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP,South Korea) (No.2016R1C1B2012140 and No.2017R1A4A1015628)
文摘The dynamic deformation behaviors and resultant microstructural variations during high-speed rolling(HSR) of a Mg alloy with a non-basal texture are investigated. To this end, AZ31 alloy samples in which the basal poles of most grains are predominantly aligned parallel to the transverse direction(TD) are subjected to hot rolling with different reductions at a rolling speed of 470 m/min. The initial grains with a TD texture are favorable for {10–12} twinning under compression along the normal direction(ND); as a result, {10–12} twins are extensively formed in the material during HSR, and this consequently results in a drastic evolution of texture from the TD texture to the ND texture and a reduction in the grain size. After the initial grains are completely twinned by the {10–12} twinning mechanism, {10–11} contraction twins and {10–11}-{10–12} double twins are formed in the {10–12} twinned grains by further deformation.Since the contraction twins and double twins have crystallographic orientations that are favorable for basal slip during HSR, dislocations easily accumulate in these twins and fine recrystallized grains nucleate in the twins to reduce the increased internal strain energy. Until a rolling reduction of 20%, {10–12}twinning is the main mechanism governing the microstructural change during HSR, and subsequently,the microstructural evolution is dominated by the formation of contraction twins and double twins and the dynamic recrystallization in these twins. With an increase in the rolling reduction, the average grain size and internal strain energy of the high-speed-rolled(HSRed) samples decrease and the basal texture evolves from the TD texture to the ND texture more effectively. As a result, the 80% HSRed sample, which is subjected to a large strain at a high strain rate in a single rolling pass, exhibits a fully recrystallized microstructure consisting of equiaxed fine grains and has an ND basal texture without a TD texture component.
文摘The Beijing-Shanghai railway, linking the two biggest cities in China, is the busiest railway in the world, having an annual cargo capacity of 120 million tons and transporting 30 million passengers. Connecting two economically developed regions-the Yangtze Delta and Circum-Bohai (sea) area-the railway