A transom stern is a common design feature for a high-speed ship.In the present study,the transom stern ventilation of NPL 3b,5b hull is investigated by three methods:H−H formula,Doctors’formula,and computational flu...A transom stern is a common design feature for a high-speed ship.In the present study,the transom stern ventilation of NPL 3b,5b hull is investigated by three methods:H−H formula,Doctors’formula,and computational fluid dynamics(CFD)method at first.For the CFD method,the ratios of the wave elevation and wetted area are used to determine the transom ventilation.Comparisons of results show that Doctors’formula is more accurate to calculate the critical transom draft Froude number.And then a Rankine panel method(RPM)based on the high-order boundary element method incorporated the modified transom stern condition is implemented to evaluate the steady wave problem of a high-speed fishery patrol ship in calm water.Besides,free-surface(FS)and double body(DB)simulations based on Star-CCM+are carried out to obtain the wave-making resistance and total resistance.The results of the resistance and wave pattern around the fishery patrol ship computed by RPM show generally good agreement with experimental measurement and CFD results.Numerical results indicate that the developed Rankine panel method with transom condition could predict the resistance of high-speed displacement ships with good accuracy.展开更多
Present paper researches the theoretical method for calculating the wave resistance of wave piercing catamarans.As an example the wave resistance of a wave piercing csatamaran is calculated.The comparison among the th...Present paper researches the theoretical method for calculating the wave resistance of wave piercing catamarans.As an example the wave resistance of a wave piercing csatamaran is calculated.The comparison among the theoretical calculation results,the model test results and the diagram evaluation results shows the efficiency of present theoretical method.At last the dependence wave resistance of wave piercing catamarans on some parameters is investigated based on the theoretical method.展开更多
Since trim and sinkage are significant while vessels are advancing forward with high speed, the predicted vessel resistance based on restrained model theory or experiment may not be real resistance of vessels during v...Since trim and sinkage are significant while vessels are advancing forward with high speed, the predicted vessel resistance based on restrained model theory or experiment may not be real resistance of vessels during voyage. It is necessary to take the influence of hull gesture into account for oredicting the resistance of high-speed ship. In the present work the resistance problem of high speed ship is treated with the viscous flow theory, and the dynamic mesh technique is adopted to coincide with variation of hull gesture of high speed vessel on voyage. The simulation of the models of S60 ship and a trimaran moving in towing tank with high speed are conducted by using the above theory and technique. The corresponding numerical results are in good agreement with the experimental data. It indicates that the resistance prediction for high speed vessels should take hull gesture into consideration and the dynamic mesh method proposed here is effective in calculating the resistance of high speed vessels.展开更多
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(Grant No.U2141228).
文摘A transom stern is a common design feature for a high-speed ship.In the present study,the transom stern ventilation of NPL 3b,5b hull is investigated by three methods:H−H formula,Doctors’formula,and computational fluid dynamics(CFD)method at first.For the CFD method,the ratios of the wave elevation and wetted area are used to determine the transom ventilation.Comparisons of results show that Doctors’formula is more accurate to calculate the critical transom draft Froude number.And then a Rankine panel method(RPM)based on the high-order boundary element method incorporated the modified transom stern condition is implemented to evaluate the steady wave problem of a high-speed fishery patrol ship in calm water.Besides,free-surface(FS)and double body(DB)simulations based on Star-CCM+are carried out to obtain the wave-making resistance and total resistance.The results of the resistance and wave pattern around the fishery patrol ship computed by RPM show generally good agreement with experimental measurement and CFD results.Numerical results indicate that the developed Rankine panel method with transom condition could predict the resistance of high-speed displacement ships with good accuracy.
文摘Present paper researches the theoretical method for calculating the wave resistance of wave piercing catamarans.As an example the wave resistance of a wave piercing csatamaran is calculated.The comparison among the theoretical calculation results,the model test results and the diagram evaluation results shows the efficiency of present theoretical method.At last the dependence wave resistance of wave piercing catamarans on some parameters is investigated based on the theoretical method.
文摘Since trim and sinkage are significant while vessels are advancing forward with high speed, the predicted vessel resistance based on restrained model theory or experiment may not be real resistance of vessels during voyage. It is necessary to take the influence of hull gesture into account for oredicting the resistance of high-speed ship. In the present work the resistance problem of high speed ship is treated with the viscous flow theory, and the dynamic mesh technique is adopted to coincide with variation of hull gesture of high speed vessel on voyage. The simulation of the models of S60 ship and a trimaran moving in towing tank with high speed are conducted by using the above theory and technique. The corresponding numerical results are in good agreement with the experimental data. It indicates that the resistance prediction for high speed vessels should take hull gesture into consideration and the dynamic mesh method proposed here is effective in calculating the resistance of high speed vessels.