期刊文献+
共找到1,578篇文章
< 1 2 79 >
每页显示 20 50 100
Microstructure,Properties and Crack Suppression Mechanism of High-speed Steel Fabricated by Selective Laser Melting at Different Process Parameters
1
作者 Wenbin Ji Chuncheng Liu +1 位作者 Shijie Dai Riqing Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期91-105,共15页
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SL... To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation. 展开更多
关键词 Selective laser melting high-speed steel mechanical properties MICROSTRUCTURE Interlaminar cracks
下载PDF
Incompatible thermal deformation of interlayers and corresponding damage mechanism of high-speed railway track structure
2
作者 Guotang Zhao Lei Zhao Yu Liu 《High-Speed Railway》 2023年第1期37-46,共10页
In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field w... In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered. 展开更多
关键词 high-speed railway Ballastless track bed Incompatible thermal deformation Damage mechanism
下载PDF
A method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed presses 被引量:1
3
作者 Jun Wang1 ,Sheng-dun Zhao1 ,Hu-shan Shi1 ,Chun-jian Hua21. School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049 2. School of Mechanical Engineering,Southern Yangtze University,Wuxi 214122,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第3期141-148,共8页
A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank m... A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank mechanism whose crank rotates at a constant angular velocity,the kinematic parameters of the slide,connecting rod and crank were formulated approximately. On the basis of the results above,three inertia forces and the input moment in the mechanism during its idle running were investigated and formulated by dynamic analysis. A verification experiment was performed on a slider-crank mechanism at a high-speed press machine. The forces derived from the established formulas were compared respectively with those obtained by the ADAMS software and the classical method of connecting rod mass substitution. It was experimentally found that the proposed formulas have an improved performance over related earlier techniques. By use of these results,a 1 000 kN 1 250 rpm four-point high-speed press machine was designed and manufactured. The slide of this press is driven by four sets of slider-crank mechanisms with symmetrical layout and opposite rotation directions to counterbalance the horizontal inertia forces. Four eccentric counterbalance blocks were designed to counterbalance the vertical force after their mass and equivalent eccentric radius were formulated. The high-speed press machine designed by the proposed counterbalance method has worked with satisfactory performance and good dynamic balance for more than four years in practical production. 展开更多
关键词 slider-crank mechanism KINEMATICS inertia force counterbalance high-speed press
下载PDF
TOOL WEAR PATTERNS AND MECHANISMS OF SOLID CEMENTED CARBIDE IN HIGH-SPEED MILLING OF ALUMINUM ALLOY 被引量:2
4
作者 万熠 刘战强 +1 位作者 艾兴 潘永智 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期125-128,共4页
The wear patterns and wear mechanisms of solid cemented carbide are analyzed in high-speed milling of aluminum alloy. Results show that the dominant wear patterns are coating damage, crater wear, micro-chipping, break... The wear patterns and wear mechanisms of solid cemented carbide are analyzed in high-speed milling of aluminum alloy. Results show that the dominant wear patterns are coating damage, crater wear, micro-chipping, breakage, and so on. The main wear mechanisms are adhesion, diffusion and fatigue. Compared with conventional speed machining, the effect and impact of thermal-dynamical coupling field play an important role in the cutting tool wear in high-speed milling of aluminum alloy. 展开更多
关键词 high-speed milling aluminum alloy tool wear wear pattern wear mechanism
下载PDF
Non-Negative Adaptive Mechanism-Based Sliding Mode Control for Parallel Manipulators with Uncertainties
5
作者 Van-Truong Nguyen 《Computers, Materials & Continua》 SCIE EI 2023年第2期2771-2787,共17页
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators... In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method. 展开更多
关键词 Parallel manipulator uncertainties and disturbances nonsingular fast terminal sliding mode control non-negative adaptive mechanism tracking differentiator
下载PDF
High-speed train cooperativecontrol based on fractional-ordersliding mode adaptive algorithm
6
作者 Junting Lin Mingjun Ni Huadian Liang 《Railway Sciences》 2023年第1期84-100,共17页
Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block... Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control. 展开更多
关键词 high-speed trains sliding mode control Fractional-order differentiation Adaptive law Cooperative control
下载PDF
Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading 被引量:4
7
作者 Xiao Liu Hui Yang +3 位作者 Biwu Zhu Yuanzhi Wu Wenhui Liu Changping Tang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期1096-1108,共13页
Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommo... Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommodation mechanism of the pre-rolled AZ31 magnesium alloy under high-speed impact loading were investigated.The twin and shear band are prevailing at low temperature,and the coexistence of twins and recrystallized grains is the dominant microstructure at medium temperature,while at high temperature,dynamic recrystallization(DRX)is almost complete.The increment of temperature reduces the critical condition difference between twinning and DRX,and the recrystallized temperature decreases with increasing strain rate.The mechanical response is related to the competition among the shear band strengthen,the twin strengthen and the fine grain strengthen and determined by the prevailing grain structure.The fine grain strengthen could compensate soften caused by the temperature increase and the reduction of twin and shear band.During high-speed deformation,different twin variants,introduced by pre-rolling,induce different deformation mechanism to accommodate plastic deformation and are in favor for non-basal slip.At low temperature,the high-speed deformation is achieved by twinning,dislocation slip and the following deformation shear band at different deformation stages.At high temperature,the high-speed deformation is realized by twinning and dislocation slip of early deformation stage,transition shear band of medium deformation stage and DRX of final deformation stage. 展开更多
关键词 mechanical response Pre-twinning Accommodation mechanism Pre-rolled AZ31 magnesium alloy high-speed impact loading
下载PDF
Dynamic Analysis of High-Speed Boat Motion Simulator by a Novel 3-DoF Parallel Mechanism with Prismatic Actuators Based on Seakeeping Trial 被引量:3
8
作者 Ali Pirouzfar Javad Enferadi Masoud Dehghan 《Journal of Marine Science and Application》 CSCD 2018年第2期178-191,共14页
In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recor... In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored. 展开更多
关键词 MOTION simulators Parallel mechanism high-speed BOAT SEAKEEPING TRIAL INVERSE dynamics Virtualwork
下载PDF
Analysis of stress and natural frequencies of high-speed spatial parallel mechanism
9
作者 陈修龙 李文彬 +1 位作者 邓昱 李云峰 《Journal of Central South University》 SCIE EI CAS 2013年第10期2676-2684,共9页
In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dyn... In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism. 展开更多
关键词 high-speed SPATIAL PARALLEL mechanism stress NATURAL frequency driving LIMB dynamic behavior
下载PDF
Dry sliding wear behavior and mechanism of AM60B alloy at 25-200 ℃ 被引量:2
10
作者 杨子润 魏敏先 +1 位作者 赵玉涛 王树奇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2584-2591,共8页
Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under t... Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces. 展开更多
关键词 magnesium alloy dry sliding wear OXIDATION tribo-layer wear mechanism
下载PDF
Application of transparent soil model tests to study the soil-rock interfacial sliding mechanism 被引量:5
11
作者 WANG Zhuang LI Chi DING Xuan-ming 《Journal of Mountain Science》 SCIE CSCD 2019年第4期935-943,共9页
When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil... When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil technology and considering the influence of the rock mass Barton joint roughness coefficient, angle of the soil mass, angle of the rock mass and soil thickness factors on slope stability. We obtained the deformation characteristics of the soil and rock slope with particle image velocimetry and the laser speckle technique. The test analysis shows that the slope sliding can be divided into three parts: displacements at the top, the middle, and the bottom of the slope; the decrease in the rock mass Barton joint roughness coefficient, and the increase in soil thickness, angles of the rock mass and soil mass lead to larger sliding displacements. Furthermore, we analyzed the different angles between the rock mass and soil thickness. The test result shows that the displacement of slope increases with larger angle of the rock mass. Conclusively, all these results can help to explain the soil-rock interfacial sliding mechanism. 展开更多
关键词 SLOPE engineering TRANSPARENT SOIL Model test INTERFACIAL sliding mechanism
下载PDF
Mechanism of formation of sliding ground fissure in loess hilly areas caused by underground mining 被引量:10
12
作者 Liu Hui Deng Kazhong +1 位作者 Lei Shaogang Bian Zhengfu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期553-558,共6页
Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of ... Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of formation and development of a sliding ground fissure by the circular sliding slice method.Moreover, we established a prediction model of a sliding fissure based on a mechanical mechanism,and verified its reliability on face 52,304, an engineering example, situated at Daliuta coal mine of Shendong mining area in western China. The results show that the stress state of a mining slope is changed by its gravity and additional stress from the shallow-buried coal seam and gully terrain. The mining slope is found to be most unstable when the ratio of the down-sliding to anti-sliding force is the maximum, causing local fractures and sliding fissures. The predicted angles for the sliding fissure of face 52,304 on both sides of the slope are found to be 64.2° and 82.4°, which are in agreement with the experimental data. 展开更多
关键词 Loess hilly area sliding ground fissure mechanical model Landslide stability Circular sliding Slice method
下载PDF
Wear mechanism for spray deposited Al-Si/SiC_p composites under dry sliding condition 被引量:6
13
作者 滕杰 李华培 陈刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2875-2882,共8页
Al-Si/15%SiCp(volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy(OM). Dry slid... Al-Si/15%SiCp(volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy(OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10-220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy(SEM) and energy-dispersive X-ray microanalysis(EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear. 展开更多
关键词 dry sliding wear wear mechanism Al-Si/SiC_p composites spray deposition
下载PDF
Flow-slide characteristics and failure mechanism of shallow landslides in granite residual soil under heavy rainfall 被引量:4
14
作者 BAI Hui-lin FENG Wen-kai +7 位作者 LI Shuang-quan YE Long-zhen WU Zhong-teng HU Rui DAI Hong-chuan HU Yun-peng YI Xiao-yu DENG Peng-cheng 《Journal of Mountain Science》 SCIE CSCD 2022年第6期1541-1557,共17页
Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only ... Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only helpful to the local government in disaster prevention, but also the theoretical basis of regional early warning technology. To determine the whole-process characteristics and failure mechanisms of flow-slide failure of granite residual soil slopes, we conducted a detailed hazard investigation in Minqing County, Fujian Province, which was impacted by Typhoon Lupit-induced heavy rainfall in August 2021. Based on the investigation and preliminary analysis results, we conducted indoor artificial rainfall physical model tests and obtained the whole-process characteristics of flow-slide failure of granite residual soil landslides. Under the action of heavy rainfall, a granite residual soil slope experiences initial deformation at the slope toe and exhibits development characteristics of continuous traction deformation toward the middle and upper parts of the slope. The critical volumetric water content during slope failure is approximately 53%. Granite residual soil is in a state of high volumetric water content under heavy rainfall conditions, and the shear strength decreases, resulting in a decrease in stability and finally failure occurrence. The new free face generated after failure constitutes an adverse condition for continued traction deformation and failure. As the soil permeability(cm/h) is less than the rainfall intensity(mm/h), and it is difficult for rainwater to continuously infiltrate in short-term rainfall, the influence depth of heavy rainfall is limited. The load of loose deposits at the slope foot also limits the development of deep deformation and failure. With the continuous effect of heavy rainfall, the surface runoff increases gradually, and the influence mode changes from instability failure caused by rainfall infiltration to erosion and scouring of surface runoff on slope surface. Transportation of loose materials by surface runoff is an important reason for prominent siltation in disaster-prone areas. 展开更多
关键词 Granite residual soil Flow slide process Failure mechanism Artificial rainfall Critical volumetric water content
下载PDF
Earthquake Emergency Response System of High-speed Railway by Least Square Method
15
作者 Qizhou Hu Yikai Wu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期1-11,共11页
This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthqua... This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthquake emergency response, the technical operational procedures for HSR seismic emergency response are proposed. The quantity, scale, and location of HSR earthquake emergency response mechanism are defined, and the corresponding emergency response system is built. In particular, the earthquake emergency response system can conduct real-time continuous dynamic monitoring of seismic activity along the railway. When earthquake occurs, the intensity of the ground motion is detected by the system. When the earthquake monitoring value reaches the earthquake alarm threshold, it will send an alarm signal to the dispatch center, and the emergency power supply will be forced to cut off. The earthquake emergency response system will continue to monitor the follow-up ground motion acceleration. The system provides the operation scheduling center with a basis for train operation control to resume operation after stopping. The monitoring result of the system reduces the disaster, and the secondary disaster is caused by the earthquake. This paper improves the HSR response mechanism in detecting earthquake disasters. The result improves the ability of HSR to deal with earthquake disasters, and reduces casualties and economic and property loss caused by earthquake disasters. 展开更多
关键词 high-speed railway(HSR) earthquake monitoring emergency response mechanism
下载PDF
Numerical simulations of kinetic formation mechanism of Tangjiashan landslide 被引量:5
16
作者 Gang Luo Xiewen Hu +1 位作者 Chengzhuang Gu Ying Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第2期149-159,共11页
Tangjiashan landslide is a typical high-speed landslide hosted on consequent bedding rock. The landslide was induced by Wenchuan earthquake at a medium-steep hill slope. The occurrence of Tangjiashan landslide was bas... Tangjiashan landslide is a typical high-speed landslide hosted on consequent bedding rock. The landslide was induced by Wenchuan earthquake at a medium-steep hill slope. The occurrence of Tangjiashan landslide was basically controlled by the tectonic structure, topography, stratum lithology, slope structure, seismic waves, and strike of river. Among various factors, the seismic loading with great intensity and long duration was dominant. The landslide initiation exhibited the local amplification effect of seismic waves at the rear of the slope, the dislocation effect on the fault, and the shear failure differentiating effect on the regions between the soft and the hard layers. Based on field investigations and with the employment of the distinct element numerical simulation program UDEC (universal distinct element code), the whole kinetic sliding process of Tan iashan landslide was represented and the formation mechanism of the consequent rock landslide under seismic loading was studied. The results are helpful for understanding seismic dynamic responses of consequent bedding rock slopes, where the slope stability could be governed by earthquakes. 展开更多
关键词 Tangjiashan high-speed landslide formation mechahism sliding process numerical simulations
下载PDF
Precise robust motion control of cell puncture mechanism driven by piezoelectric actuators with fractional-order nonsingular terminal slidingmode control 被引量:2
17
作者 Shengdong Yu Hongtao Wu +2 位作者 Mingyang Xie Haiping Lin Jinyu Ma 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期410-426,共17页
A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on... A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on the Bouc–Wen model,and the nonlinear part of the dynamic model is optimized locally to facilitate the construction of a robust controller.A model-based,nonlinear robust controller is constructed using time-delay estimation(TDE)and fractional-order nonsingular terminal sliding mode(FONTSM).The proposed controller does not require prior knowledge of unknown disturbances due to its real-time online estimation and compensation of unknown terms by using the TDE technology.The controller also has finite-time convergence and high-precision trajectory tracking capabilities due to FONTSM manifold and fast terminal sliding mode-type reaching law.The stability of the closed-loop system is proved by Lyapunov stability theory.Computer simulation and hardware-in-loop simulation experiments of CPM verify that the proposed controller outperforms traditional terminal sliding mode controllers,such as the integer-order or model-free controller.The proposed controller can also continuously output without chattering and has high control accuracy.Zebrafish embryo is used as a verification target to complete the cell puncture experiment.From the engineering application perspective,the proposed control strategy can be effectively applied in a PEA-driven CPM. 展开更多
关键词 Cell puncture mechanism(CPM) Piezoelectric actuator(PEA) Robust motion control Fractional-order nonsingular terminal sliding mode(FONTSM) Time-delay estimation(TDE)
下载PDF
Full-scale multi-functional test platform for investigating mechanical performance of track–subgrade systems of high-speed railways 被引量:2
18
作者 Wanming Zhai Kaiyun Wang +3 位作者 Zhaowei Chen Shengyang Zhu Chengbiao Cai Gang Liu 《Railway Engineering Science》 2020年第3期213-231,共19页
Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway... Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure. 展开更多
关键词 Full-scale test high-speed railway Track–subgrade system Ballastless track Ballasted track mechanical performance Long-term performance evolution Damage and degradation
下载PDF
Mechanism of antireflux procedures in treating sliding hiatal hernia
19
作者 李建业 《外科研究与新技术》 2011年第3期163-164,共2页
Objective To investigate the mechanism of antireflux procedures in treating sliding hiatal hernia and the effectiveness of the method of cardia position by clock to evaluate the outcome of antireflux procedures. Metho... Objective To investigate the mechanism of antireflux procedures in treating sliding hiatal hernia and the effectiveness of the method of cardia position by clock to evaluate the outcome of antireflux procedures. Methods From 1992 to 2008,136 patients with sliding hiatal hernia underwent transabdominal antireflux surgery: 展开更多
关键词 mechanism of antireflux procedures in treating sliding hiatal hernia
下载PDF
Study on Sinking-Sliding Failure Mechanism of Perilous Rock at Wangxia in Three Gorges of the Yangtze River, China
20
作者 Hong-Kai Chen Sheng-Juan Wang 《Journal of Geoscience and Environment Protection》 2017年第2期30-43,共14页
The giant perilous rock at Wangxia (named Wangxia perilous rock) is representative in Three Gorges of the Yangtze River, China, has threatened badly the navigation of the Yangtze River channel for a long period. The g... The giant perilous rock at Wangxia (named Wangxia perilous rock) is representative in Three Gorges of the Yangtze River, China, has threatened badly the navigation of the Yangtze River channel for a long period. The giant perilous rock is composed of siliceous limestone and argillaceous limestone, and includes two elements marking by W1 and W2, respectively. The W1 is an isolated pillar while the W2 is in clintheriform. The linking segment of dominant fissure in the W2 is composed by moniliform solution funnels at its back, and the locked segment of the dominant fissure at the base of the W2 is composed by two parts. For the locked part of the dominant fissure of the W2, the upper segment shows the same lithology with the perilous rock and it can be simplified as an elastic medium, for the lower segment composed by argillaceous shale and mudstone can be simplified as a strain-softening medium. Introducing the water-softened function, the constitutive curves with two kinds of medium materials for the locked segment in the dominant fissure of the W2 have been proposed. Based on energy principle, the cusp catastrophe model for perilous rock rupture is built and formulas for the transient elastic and impulsive acceleration and the elastic-impulsive velocity of perilous rock catastrophe rupture have been established. By the calculation, the elastic-impulsive acceleration for the catastrophe rupture of the W2 is 531.4 m/s2, while the average elastic-impulsive velocity is 2.608 m/s. Further, it is deduced that the elastic-impulsive velocity at the base of the W2 is about 5.2 m/s. For the transient ruture of the W2, there is a greater speed difference between the top and the base of the W2, which impels the giant perilous rock to be retroverted sliding rupture, coinciding with the fact. Undoubtedly, studies in this paper must play an important role to analyze the catastrophe rupture mechanism of giant perilous rocks at both banks in Three Gorges of the Yangtze River, China. 展开更多
关键词 Sinking-sliding Failure mechanism Water-Softened Function CATASTROPHE Theory Energy Principle Giant Perilous Rock Three Gorges of the YANGTZE River China
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部