Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th...Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.展开更多
Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the ...Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.展开更多
The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for ...The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.展开更多
The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-static creep. A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory. The pa...The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-static creep. A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory. The parameters in the model are determined by cyclic triaxial soil tests. A method for analyzing the stability of offshore soft foundation under wave loads is given by combining the model with pseudo-static creep analysis. An example is analyzed by the method. The results show that the horizontal and vertical stability of foundations under wave loads can be analyzed by it and the analytical results are qualitatively consistent with the observed failure modes of shallow foundations.展开更多
Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibil...Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibility and low permeability of soft soil,the post-construction settlement of the subgrade is extremely difficult to control in these regions,which seriously threatens the operation safety of high-speed trains.In this work,the significant issues of high-speed railway subgrades in soft soil regions are discussed.The theoretical and experimental studies on foundation treatment methods for ballasted and ballastless tracks are reviewed.The settlement evolution and the settlement control effect of different treatment methods are highlighted.Control technologies of subgrade differential settlement are subsequently briefly presented.Settlement calculation algorithms of foundations reinforced by different treatment methods are discussed in detail.The defects of existing prediction methods and the challenges faced in their practical applications are analyzed.Furthermore,the guidance on future improvement in control theories and technologies of subgrade settlement for high-speed railway lines and the corresponding challenges are provided.展开更多
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio...In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.展开更多
The design method of reinforcement of soft foundation with geotextile for the sea dike of the Zhapu Port is discussed in this paper. The prototype behaviours such as pore water pressure, settlement and so on were obse...The design method of reinforcement of soft foundation with geotextile for the sea dike of the Zhapu Port is discussed in this paper. The prototype behaviours such as pore water pressure, settlement and so on were observed. The degree of consolidation is found out from observed pore water pressure and observed settlement respectively, then the strength increment of soil is calculated and compared with that obtained from vane shear tests. For the use of observed pore water pressure, the consolidation coefficient of soil is deduced approximately with a method named experimental exponential interpolation. The degree of consolidation of the ground is deduced theoretically from the dissipation of pore water pressure. Besides, the logarithmic curve and hyperbola are used to fit the observed time-settlement curve, and the degree of consolidation of soil is obtained according to the definition of the consolidation degree. After preliminary verification with observed prototype data, the method to reinforce the low dike with geotextile is considered to be simple and rational, and it can also reduce the construction cost.展开更多
To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and...To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.展开更多
Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison ...Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.展开更多
Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological enviro...Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result.展开更多
Strengthening soft foundation by vacuum loading from lower position is a new method of accelerating the consolidation of dredger fill. This paper presents the mechanism of soft foundation strengthening by vacuum loadi...Strengthening soft foundation by vacuum loading from lower position is a new method of accelerating the consolidation of dredger fill. This paper presents the mechanism of soft foundation strengthening by vacuum loading from lower position and evaluates the effectiveness of this method under various boundary conditions by means of finite element method (FEM) on the basis of Biot's consolidation theory.展开更多
Explosion for the treatment of underwater soft foundation is a technique newly developed in China. This paper describes the application of the method of explosion to underwater soft foundation treatment of the Great-W...Explosion for the treatment of underwater soft foundation is a technique newly developed in China. This paper describes the application of the method of explosion to underwater soft foundation treatment of the Great-West Dyke, Lianyungang Port, including the technical characteristics and the effect, selection of explosion parameters, workmanship of construction, requirements of quality and inspection, and the like.展开更多
To make a large area of dredger fill silt surface layer form working face and subsequent construction problems, the project conducts the bamboo network reinforcement in the silt surface layer. It makes the surface lay...To make a large area of dredger fill silt surface layer form working face and subsequent construction problems, the project conducts the bamboo network reinforcement in the silt surface layer. It makes the surface layer bearing capacity to meet the construction requirement of deep processing. Based on Shantou Municipal Road Embankment Treatment Engineering and the project, the bamboo network reinforcement technology to reinforce the dredger fill super soft soil surface layer is used. The results show that the bearing capacity of hydraulic fill super soft soil surface layer is 32.6 kPa after 3 months treatment. The surface layer bearing capacity after 3 months treatment improved 323% than the early treatment and increased 695% than no processing. The results indicate that the reinforcement effect is outstanding and provide the basis for drafting the dredger fill super soft soil surface layer treatment plan.展开更多
Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversi...Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversified construction environment,climate and geological influence in highway construction,soft soil foundation is one of the more typical geological forms.With wide distribution in our country,seen as a big difficulty,highway construction technology and directly affect the quality of highway construction,cost,if not properly handled,will cause the soft soil foundation highway engineering structure is not stable,prone to accidents in use.In this paper,we study the treatment of soft soil foundation in highway construction,and put forward some reasonable Suggestions.展开更多
CFG pile has been widely applied as one of the common ground treatment techniques. As a concealed work, the construction quality of pile foundation not only relates to the success of the project, but also concerns the...CFG pile has been widely applied as one of the common ground treatment techniques. As a concealed work, the construction quality of pile foundation not only relates to the success of the project, but also concerns the benefits of thousands of hot, seholds. Only strengthening the supervision and management during the construction and strictly designing and specifying CFG pile can ensure the construction quality of CFG pile. But most researches focus on operating mechanism and theoretical analysis, and there are fewer researches about the construction of CFG pile. The real construction of CFG pile has no specified operation and lacks of the construction guidance, which not only causes great problems and has great influence on the intensity of CFG pile, but also makes the real pile body have great difference from the design requirements. Therefore, the study on construction of CFG pile in the paper has great significance.展开更多
Immersed tube tunnels are usually placed on soft soil layers in cross-sea tunnelling engineering.Owing to the influence of stratum conditions and slope design,the longitudinal distribution of substratum layers is gene...Immersed tube tunnels are usually placed on soft soil layers in cross-sea tunnelling engineering.Owing to the influence of stratum conditions and slope design,the longitudinal distribution of substratum layers is generally uneven.Thus,the inhomogeneous deformation of the element-joint becomes the key factor in the failure of the immersed tube tun-nel.Therefore,a corresponding calculation method for joint deformation is needed to explore the deformation law of immersed tube tunnels.By constructing a three-section immersed tube tunnel analysis model(TTM),the relationship between the two types of deformation of the immersed tube tunnel structure in a longitudinal nonuniform soft soil foundation is described,and the deformation characteristics of the immersed structure under different boundaries are discussed.Based on the mechanical behaviour of the joint and foundation,according to the Timoshenko beam on the Vlasov two-parameter foundation(VTM),considering the tidal cyclic load during the operation and maintenance period,an example analysis is given.Moreover,the deformation characteristics and development trend of the immersed tube tunnel under the influence of different soil layers are discussed.The obtained results have a certain guiding significance for the deformation calculation of immersed tube tunnels.展开更多
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on...With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.展开更多
Suction caisson foundations are often subjected to vertical uplift loads,but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisso...Suction caisson foundations are often subjected to vertical uplift loads,but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisson foundation.So it is important to establish an uplift failure criterion.In order to study the uplift bearing mechanism and failure mode of suction caisson foundation,a series of model tests were carried out considering the effects of aspect ratio,soil permeability and loading mode.Test results indicate that the residual negative pressure at the top of caisson is beneficial to enhance uplift bearing capacity.The smaller the permeability coefficient is,the higher the residual negative pressure will be.And the residual negative pressure is approximately equal to the water head that causes seepage in the caisson.When the load reaches the ultimate bearing capacity,both the top and bottom negative pressures are smaller than Su and both the top and bottom reverse bearing capacity factors are smaller than 1.0 in soft clay.Combined the uplift bearing characteristics of caisson in sandy soil and soft clay,the bearing capacity composition and the calculation method are proposed.It can provide a reference for the engineering design of suction caisson foundation under vertical load.展开更多
In this paper, numerical simulation with soil-water coupling finite element-finite difference(FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure(EPWP) of a piled-raft fou...In this paper, numerical simulation with soil-water coupling finite element-finite difference(FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure(EPWP) of a piled-raft foundation due to cyclic high-speed(speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer(No-9 layer) has better effect on reducing the settlement.展开更多
As the anchoring foundation of the tension leg platform(TLP),suction caisson foundation is subjected to the long-term vertical pullout loads.But there are few studies on the mechanism of the unloading creep of soft cl...As the anchoring foundation of the tension leg platform(TLP),suction caisson foundation is subjected to the long-term vertical pullout loads.But there are few studies on the mechanism of the unloading creep of soft clay and long-term uplift bearing capacity of suction caisson foundations.To address this problem,unloading creep tests of soft clay were carried out to analyze the strain development with time under different confining pressures.The test results show that the creep curve rapidly develops in the early stage and tends to stabilize in the later stage.The unloading deviator stress is higher,the unloading creep deformation is greater and the soft clay has typical nonlinear creep characteristics.Therefore,by introducing the creep model and considering the influence of the deviator stress,the stress-dependent Merchant model is proposed to describe the unloading creep of soft clay.Then,the stress-dependent Merchant model is extended to a three-dimension constitutive model,and a finite element subroutine is developed to establish a finite element analysis method for analyzing the long-term uplift capacity of suction caisson foundations and validated with the long-term uplift bearing capacity results of caisson model.展开更多
基金Projects(2009G008-B,2010G018-E-3) supported by Key Projects of China Railway Ministry Science and Technology Research and Development ProgramProject(CX2013B076) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.
文摘Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.
基金This project was financially supported by the National Natural Science Foundation of China(No.59679018)
文摘The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.
基金National Natral Science Foundation of China(Grant No.59679018)
文摘The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-static creep. A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory. The parameters in the model are determined by cyclic triaxial soil tests. A method for analyzing the stability of offshore soft foundation under wave loads is given by combining the model with pseudo-static creep analysis. An example is analyzed by the method. The results show that the horizontal and vertical stability of foundations under wave loads can be analyzed by it and the analytical results are qualitatively consistent with the observed failure modes of shallow foundations.
基金National Natural Science Foundation of China(No.51778485).
文摘Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibility and low permeability of soft soil,the post-construction settlement of the subgrade is extremely difficult to control in these regions,which seriously threatens the operation safety of high-speed trains.In this work,the significant issues of high-speed railway subgrades in soft soil regions are discussed.The theoretical and experimental studies on foundation treatment methods for ballasted and ballastless tracks are reviewed.The settlement evolution and the settlement control effect of different treatment methods are highlighted.Control technologies of subgrade differential settlement are subsequently briefly presented.Settlement calculation algorithms of foundations reinforced by different treatment methods are discussed in detail.The defects of existing prediction methods and the challenges faced in their practical applications are analyzed.Furthermore,the guidance on future improvement in control theories and technologies of subgrade settlement for high-speed railway lines and the corresponding challenges are provided.
基金the Educational Department of Liaoning Province Through Scientific Research Project(20060051)National Natural Science Foundation of China(50604009)Universities Excellent Talents Support Plan to Train Foundation of Liaoning(RC-04-13)
文摘In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.
文摘The design method of reinforcement of soft foundation with geotextile for the sea dike of the Zhapu Port is discussed in this paper. The prototype behaviours such as pore water pressure, settlement and so on were observed. The degree of consolidation is found out from observed pore water pressure and observed settlement respectively, then the strength increment of soil is calculated and compared with that obtained from vane shear tests. For the use of observed pore water pressure, the consolidation coefficient of soil is deduced approximately with a method named experimental exponential interpolation. The degree of consolidation of the ground is deduced theoretically from the dissipation of pore water pressure. Besides, the logarithmic curve and hyperbola are used to fit the observed time-settlement curve, and the degree of consolidation of soil is obtained according to the definition of the consolidation degree. After preliminary verification with observed prototype data, the method to reinforce the low dike with geotextile is considered to be simple and rational, and it can also reduce the construction cost.
基金Project(2012AA112504) supported by the National High Technology Research and Development Program of ChinaProjects(51108048,51478054) supported by the National Natural Science Foundation of China
文摘To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.
基金Projects(50778181, 51178472) supported by the National Natural Science Foundation of China Project(2007045) supported by the Transportation Department of Hunan Province,China
文摘Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.
基金National Natural Science Foundations of China(Nos.41172236,41402243)
文摘Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result.
文摘Strengthening soft foundation by vacuum loading from lower position is a new method of accelerating the consolidation of dredger fill. This paper presents the mechanism of soft foundation strengthening by vacuum loading from lower position and evaluates the effectiveness of this method under various boundary conditions by means of finite element method (FEM) on the basis of Biot's consolidation theory.
文摘Explosion for the treatment of underwater soft foundation is a technique newly developed in China. This paper describes the application of the method of explosion to underwater soft foundation treatment of the Great-West Dyke, Lianyungang Port, including the technical characteristics and the effect, selection of explosion parameters, workmanship of construction, requirements of quality and inspection, and the like.
文摘To make a large area of dredger fill silt surface layer form working face and subsequent construction problems, the project conducts the bamboo network reinforcement in the silt surface layer. It makes the surface layer bearing capacity to meet the construction requirement of deep processing. Based on Shantou Municipal Road Embankment Treatment Engineering and the project, the bamboo network reinforcement technology to reinforce the dredger fill super soft soil surface layer is used. The results show that the bearing capacity of hydraulic fill super soft soil surface layer is 32.6 kPa after 3 months treatment. The surface layer bearing capacity after 3 months treatment improved 323% than the early treatment and increased 695% than no processing. The results indicate that the reinforcement effect is outstanding and provide the basis for drafting the dredger fill super soft soil surface layer treatment plan.
文摘Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversified construction environment,climate and geological influence in highway construction,soft soil foundation is one of the more typical geological forms.With wide distribution in our country,seen as a big difficulty,highway construction technology and directly affect the quality of highway construction,cost,if not properly handled,will cause the soft soil foundation highway engineering structure is not stable,prone to accidents in use.In this paper,we study the treatment of soft soil foundation in highway construction,and put forward some reasonable Suggestions.
文摘CFG pile has been widely applied as one of the common ground treatment techniques. As a concealed work, the construction quality of pile foundation not only relates to the success of the project, but also concerns the benefits of thousands of hot, seholds. Only strengthening the supervision and management during the construction and strictly designing and specifying CFG pile can ensure the construction quality of CFG pile. But most researches focus on operating mechanism and theoretical analysis, and there are fewer researches about the construction of CFG pile. The real construction of CFG pile has no specified operation and lacks of the construction guidance, which not only causes great problems and has great influence on the intensity of CFG pile, but also makes the real pile body have great difference from the design requirements. Therefore, the study on construction of CFG pile in the paper has great significance.
基金The work was financially supported by the Natural Science Foundation of Guangdong Province,China(Grant No.2022A1515011200)the State Key Laboratory for Geo-Mechanics and Deep Underground Engineering of China University of Mining&Technology(Grant No.SKLGDUEK2005)the Science and Technology Planning Project of Guangdong Province of China(Grant No.STKJ2021129).
文摘Immersed tube tunnels are usually placed on soft soil layers in cross-sea tunnelling engineering.Owing to the influence of stratum conditions and slope design,the longitudinal distribution of substratum layers is generally uneven.Thus,the inhomogeneous deformation of the element-joint becomes the key factor in the failure of the immersed tube tun-nel.Therefore,a corresponding calculation method for joint deformation is needed to explore the deformation law of immersed tube tunnels.By constructing a three-section immersed tube tunnel analysis model(TTM),the relationship between the two types of deformation of the immersed tube tunnel structure in a longitudinal nonuniform soft soil foundation is described,and the deformation characteristics of the immersed structure under different boundaries are discussed.Based on the mechanical behaviour of the joint and foundation,according to the Timoshenko beam on the Vlasov two-parameter foundation(VTM),considering the tidal cyclic load during the operation and maintenance period,an example analysis is given.Moreover,the deformation characteristics and development trend of the immersed tube tunnel under the influence of different soil layers are discussed.The obtained results have a certain guiding significance for the deformation calculation of immersed tube tunnels.
基金supported by Program for New Century Excellent Talents in University of China (Grant No.NCET-12-0941)the Fundamental Research Funds for the Central Universities of China (Grant No.A0920502051206-3)
文摘With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.
基金the National Key Research and Development Program(Grant No.2017YFC0703408)the National Natural Science Foundation of China(Grant Nos.51678145 and 51478160)the Natural Science Foundation of Jiangsu Province(Grant No.BK20180155).
文摘Suction caisson foundations are often subjected to vertical uplift loads,but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisson foundation.So it is important to establish an uplift failure criterion.In order to study the uplift bearing mechanism and failure mode of suction caisson foundation,a series of model tests were carried out considering the effects of aspect ratio,soil permeability and loading mode.Test results indicate that the residual negative pressure at the top of caisson is beneficial to enhance uplift bearing capacity.The smaller the permeability coefficient is,the higher the residual negative pressure will be.And the residual negative pressure is approximately equal to the water head that causes seepage in the caisson.When the load reaches the ultimate bearing capacity,both the top and bottom negative pressures are smaller than Su and both the top and bottom reverse bearing capacity factors are smaller than 1.0 in soft clay.Combined the uplift bearing characteristics of caisson in sandy soil and soft clay,the bearing capacity composition and the calculation method are proposed.It can provide a reference for the engineering design of suction caisson foundation under vertical load.
基金National Natural Science Foundation of China under Grant Nos.41627801 and 41372284The Special Project Fund of Taishan Scholars of Shandong Province under Grant No.2015-212China Postdoctoral Science Foundation under Grant No.2017M612227
文摘In this paper, numerical simulation with soil-water coupling finite element-finite difference(FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure(EPWP) of a piled-raft foundation due to cyclic high-speed(speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer(No-9 layer) has better effect on reducing the settlement.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51878160, 51678145, and52078128)
文摘As the anchoring foundation of the tension leg platform(TLP),suction caisson foundation is subjected to the long-term vertical pullout loads.But there are few studies on the mechanism of the unloading creep of soft clay and long-term uplift bearing capacity of suction caisson foundations.To address this problem,unloading creep tests of soft clay were carried out to analyze the strain development with time under different confining pressures.The test results show that the creep curve rapidly develops in the early stage and tends to stabilize in the later stage.The unloading deviator stress is higher,the unloading creep deformation is greater and the soft clay has typical nonlinear creep characteristics.Therefore,by introducing the creep model and considering the influence of the deviator stress,the stress-dependent Merchant model is proposed to describe the unloading creep of soft clay.Then,the stress-dependent Merchant model is extended to a three-dimension constitutive model,and a finite element subroutine is developed to establish a finite element analysis method for analyzing the long-term uplift capacity of suction caisson foundations and validated with the long-term uplift bearing capacity results of caisson model.