To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active...To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.展开更多
With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components ...With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components is critical in the digital hydraulic technology.High-speed on-of valves(HSVs)which convert a train of input pulses into the fast and accurate switching between the on and of states belong to widely used basic digital hydraulic elements.In some ways,the characteristics of the HSVs determine the performance of the digital hydraulic systems.This paper discusses the development of HSVs and their applications.First,the HSVs with innovative structures which is classifed into direct drive valves and pilot operated valves are discussed,with the emphasis on their performance.Then,an overview of HSVs with intelligent materials is presented with considering of the switching frequency and fow capacity.Finally,the applications of the HSVs are reviewed,including digital hydraulic components with the integration of the HSVs and digital hydraulic systems controlled by the HSVs.展开更多
Two-stage directional valves usually employ proportional pilot control technology,which has the disadvantages of dead zones,leakage,and the large moving mass of the pilot valve.It is difficult,therefore,to achieve fas...Two-stage directional valves usually employ proportional pilot control technology,which has the disadvantages of dead zones,leakage,and the large moving mass of the pilot valve.It is difficult,therefore,to achieve fast-response performance of the main valve.In order to overcome this problem,a switching pilot technology that employs two independent high-speed on/off valves(HSVs)is proposed to replace the traditional pilot proportional valve.Due to the rapid switching characteristics of HSVs,the dead zone of the pilot stage is avoided,and the dynamic response performance of the main valve is improved.The experiments indicate that the switching frequency of the pilot HSVs and supply pressure of the pilot stage have a very large effect on the dynamic performance and control accuracy of the main valve.Increasing the switching frequency of the pilot HSVs is helpful for improving main-valve control accuracy.The larger supply pressure of the pilot stage can achieve a faster dynamic performance of the main valve while causing larger static errors.The results show that the switching pilot technology can clearly improve the static and dynamic performances of the main valve.With the increase of pilot supply pressure,the step rise time is reduced from 21.4 ms to 16.8 ms,and the dynamic performance of the main valve is improved by 21.5%.With the increase of pilot switching frequency,the steady-state error decreases from 24μm to 20μm,and the control accuracy of the main valve is improved by 16.7%.展开更多
基金Aeronautical Science Foundation of China (04B52012, 98B52023)
文摘To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.
基金Supported by Key Technologies Research and Development Program of China(Grant No.2019YFB2004502)National Natural Science Foundation of China(Grant Nos.51805350,51775362)Postdoctoral Science Foundation of China(Grant No.2019M651073).
文摘With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components is critical in the digital hydraulic technology.High-speed on-of valves(HSVs)which convert a train of input pulses into the fast and accurate switching between the on and of states belong to widely used basic digital hydraulic elements.In some ways,the characteristics of the HSVs determine the performance of the digital hydraulic systems.This paper discusses the development of HSVs and their applications.First,the HSVs with innovative structures which is classifed into direct drive valves and pilot operated valves are discussed,with the emphasis on their performance.Then,an overview of HSVs with intelligent materials is presented with considering of the switching frequency and fow capacity.Finally,the applications of the HSVs are reviewed,including digital hydraulic components with the integration of the HSVs and digital hydraulic systems controlled by the HSVs.
基金supported by the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(No.GZKF-201906)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province,China(No.2022C01132)+1 种基金the Natural Science Foundation of Zhejiang Province,China(No.LQ21E050017)the China Postdoctoral Science Foundation(Nos.2021M692777 and 2021T140594)。
文摘Two-stage directional valves usually employ proportional pilot control technology,which has the disadvantages of dead zones,leakage,and the large moving mass of the pilot valve.It is difficult,therefore,to achieve fast-response performance of the main valve.In order to overcome this problem,a switching pilot technology that employs two independent high-speed on/off valves(HSVs)is proposed to replace the traditional pilot proportional valve.Due to the rapid switching characteristics of HSVs,the dead zone of the pilot stage is avoided,and the dynamic response performance of the main valve is improved.The experiments indicate that the switching frequency of the pilot HSVs and supply pressure of the pilot stage have a very large effect on the dynamic performance and control accuracy of the main valve.Increasing the switching frequency of the pilot HSVs is helpful for improving main-valve control accuracy.The larger supply pressure of the pilot stage can achieve a faster dynamic performance of the main valve while causing larger static errors.The results show that the switching pilot technology can clearly improve the static and dynamic performances of the main valve.With the increase of pilot supply pressure,the step rise time is reduced from 21.4 ms to 16.8 ms,and the dynamic performance of the main valve is improved by 21.5%.With the increase of pilot switching frequency,the steady-state error decreases from 24μm to 20μm,and the control accuracy of the main valve is improved by 16.7%.