Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The dev...Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The development of rtmning velocity, temperature, crystallinity and theological force is investigated for the take-up velocity over a range of 6 000 - 10 000 m/min. The position of necking point, temperature rise and abrupt increase of crystallinity move closer to the spinneret with the increase of take-up velocity,展开更多
Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of v...Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.展开更多
High-performance carbon fiber-reinforced polyether-ether-ketone(CF/PEEK)has been gradually applied in aerospace and automobile applications because of its high strength-to-weight ratio and impact resistance.The drymac...High-performance carbon fiber-reinforced polyether-ether-ketone(CF/PEEK)has been gradually applied in aerospace and automobile applications because of its high strength-to-weight ratio and impact resistance.The drymachining requirement tends to cause the cutting temperature to surpass the glass transition temperature(Tg),leading to poor surface quality,which is the bottleneck for dry milling of CF/PEEK.Temperature suppression has become an important breakthrough in the feasibility of high-speed dry(HSD)milling of CF/PEEK.However,heat partitioning and jet heat transfer mechanisms pose strong challenges for temperature suppression analytical modeling.To address this gap,an innovative temperature suppression analytical model based on heat partitioning and jet heat transfer mechanisms is first developed for suppressing workpiece temperature via the first-time implementation of an air jet cooling process in the HSD milling of UD-CF/PEEK.Then,verification experiments of the HSD milling of UD-CF/PEEK with four fiber orientations are performed for dry and air jet cooling conditions.The chip morphologies are characterized to reveal the formation mechanism and heat-carrying capacity of the chip.The milling force model can obtain the force coefficients and the total cutting heat.The workpiece temperature increase model is validated to elucidate the machined surface temperature evolution and heat partition characteristics.On this basis,an analytical model is verified to predict the workpiece temperature of air jet cooling HSD milled with UD-CF/PEEK with a prediction accuracy greater than 90%.Compared with those under dry conditions,the machined surface temperatures for the four fiber orientations decreased by 30%–50%and were suppressed within the Tg range under air jet cooling conditions,resulting in better surface quality.This work describes a feasible process for the HSD milling of CF/PEEK.展开更多
Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology featu...Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology features(chip free surface,tool-chip contact surface,and chip edge),and chip segment parameters in subsequent high-speed(vc=50 and 150 m min-1)machining of selective laser melted(SLMed)Ti6Al4V alloys,which are significantly different from conventional Ti6Al4V alloy in microstructure,mechanical properties and machinability.The effect of laser beam scanning schemes(0°,67.5°,and 90°),machined surfaces(top and front),and cutting speeds on serrated chip characteristics of SLMed Ti6Al4Valloys was investigated.Based on the Johnson-Cook constitutive model of SLMed Ti6Al4Valloys,an orthogonal cutting model was developed to better understand the effect of physical-mechanical properties on the shear localization,which dominates the formation mechanism of serrated chips in post-machining of SLMed Ti6Al4V alloy.The results showed that the critical cutting speed(CCS)for chip serration of SLMed Ti6Al4V alloy is lower than that for serrated chips of conventional Ti6Al4V alloy,and the serrated profile of SLMed Ti6Al4V chips was more regular and pronounced.Besides,due to anisotropic microstructure and mechanical properties of SLMed Ti6Al4Valloys,the serration degree of chips produced on the top surfaces of SLMed Ti6Al4Valloys is more prominent than that of chips generated on the front surfaces.In addition,because of the poor deformation coordination and high plastic flow stresses of needle-like martensiteα′,the plastic flow and grain distortion in the adiabatic shear band(ASB)of SLMed Ti6Al4V chips are significantly smaller than those in the ASB of conventional Ti6Al4V with equiaxed grains.展开更多
The ADC12 aluminum alloy is prone to severe tool wear and high cutting heat during high-speed milling because of its high hardness.This study analyzes the highspeed milling process from the perspective of different ch...The ADC12 aluminum alloy is prone to severe tool wear and high cutting heat during high-speed milling because of its high hardness.This study analyzes the highspeed milling process from the perspective of different chip morphologies.The influence of cutting temperature on chip morphology was expounded.A two-dimensional orthogonal cutting model was established for finite element analysis(FEA)of high-speed milling of ADC12 aluminum alloy.A theoretical analysis model of cutting force and cutting temperature was proposed based on metal cutting theory.The variations in chip shape,cutting force,and cutting temperature with cutting speed increasing were analyzed via FEA.The results show that,with the increase in cutting speed,the chip morphology changes from continuous to serrated,and then back to continuous.The serrated chip is weakened and the cutting temperature is lowered when the speed is lower than 600 m·min^(-1)or higher than 1800 m·min^(-1).This study provides a reference for reducing cutting temperature,controlling chip morphology and improving cutting tool life.展开更多
文摘Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The development of rtmning velocity, temperature, crystallinity and theological force is investigated for the take-up velocity over a range of 6 000 - 10 000 m/min. The position of necking point, temperature rise and abrupt increase of crystallinity move closer to the spinneret with the increase of take-up velocity,
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20204007,50390090,20490220,10590355)the Doctoral Foundation of National Education Committee of China(No.20030248008)the 863 Project of China(No.2002AA336120).
文摘Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3206700)the Fundamental Research Funds for the Central Universities,China(Grant No.2023CDJYXTD-003)the Natural Science Foundation of Chongqing,China(Grant No.2022NSCQMSX2038).
文摘High-performance carbon fiber-reinforced polyether-ether-ketone(CF/PEEK)has been gradually applied in aerospace and automobile applications because of its high strength-to-weight ratio and impact resistance.The drymachining requirement tends to cause the cutting temperature to surpass the glass transition temperature(Tg),leading to poor surface quality,which is the bottleneck for dry milling of CF/PEEK.Temperature suppression has become an important breakthrough in the feasibility of high-speed dry(HSD)milling of CF/PEEK.However,heat partitioning and jet heat transfer mechanisms pose strong challenges for temperature suppression analytical modeling.To address this gap,an innovative temperature suppression analytical model based on heat partitioning and jet heat transfer mechanisms is first developed for suppressing workpiece temperature via the first-time implementation of an air jet cooling process in the HSD milling of UD-CF/PEEK.Then,verification experiments of the HSD milling of UD-CF/PEEK with four fiber orientations are performed for dry and air jet cooling conditions.The chip morphologies are characterized to reveal the formation mechanism and heat-carrying capacity of the chip.The milling force model can obtain the force coefficients and the total cutting heat.The workpiece temperature increase model is validated to elucidate the machined surface temperature evolution and heat partition characteristics.On this basis,an analytical model is verified to predict the workpiece temperature of air jet cooling HSD milled with UD-CF/PEEK with a prediction accuracy greater than 90%.Compared with those under dry conditions,the machined surface temperatures for the four fiber orientations decreased by 30%–50%and were suppressed within the Tg range under air jet cooling conditions,resulting in better surface quality.This work describes a feasible process for the HSD milling of CF/PEEK.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975112 and 51575289)。
文摘Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology features(chip free surface,tool-chip contact surface,and chip edge),and chip segment parameters in subsequent high-speed(vc=50 and 150 m min-1)machining of selective laser melted(SLMed)Ti6Al4V alloys,which are significantly different from conventional Ti6Al4V alloy in microstructure,mechanical properties and machinability.The effect of laser beam scanning schemes(0°,67.5°,and 90°),machined surfaces(top and front),and cutting speeds on serrated chip characteristics of SLMed Ti6Al4Valloys was investigated.Based on the Johnson-Cook constitutive model of SLMed Ti6Al4Valloys,an orthogonal cutting model was developed to better understand the effect of physical-mechanical properties on the shear localization,which dominates the formation mechanism of serrated chips in post-machining of SLMed Ti6Al4V alloy.The results showed that the critical cutting speed(CCS)for chip serration of SLMed Ti6Al4V alloy is lower than that for serrated chips of conventional Ti6Al4V alloy,and the serrated profile of SLMed Ti6Al4V chips was more regular and pronounced.Besides,due to anisotropic microstructure and mechanical properties of SLMed Ti6Al4Valloys,the serration degree of chips produced on the top surfaces of SLMed Ti6Al4Valloys is more prominent than that of chips generated on the front surfaces.In addition,because of the poor deformation coordination and high plastic flow stresses of needle-like martensiteα′,the plastic flow and grain distortion in the adiabatic shear band(ASB)of SLMed Ti6Al4V chips are significantly smaller than those in the ASB of conventional Ti6Al4V with equiaxed grains.
基金the National Natural Science Foundation of China(No.51975123)Fuzhou Science and Technology Plan Project(No.2019G42)。
文摘The ADC12 aluminum alloy is prone to severe tool wear and high cutting heat during high-speed milling because of its high hardness.This study analyzes the highspeed milling process from the perspective of different chip morphologies.The influence of cutting temperature on chip morphology was expounded.A two-dimensional orthogonal cutting model was established for finite element analysis(FEA)of high-speed milling of ADC12 aluminum alloy.A theoretical analysis model of cutting force and cutting temperature was proposed based on metal cutting theory.The variations in chip shape,cutting force,and cutting temperature with cutting speed increasing were analyzed via FEA.The results show that,with the increase in cutting speed,the chip morphology changes from continuous to serrated,and then back to continuous.The serrated chip is weakened and the cutting temperature is lowered when the speed is lower than 600 m·min^(-1)or higher than 1800 m·min^(-1).This study provides a reference for reducing cutting temperature,controlling chip morphology and improving cutting tool life.