The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receivin...The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receiving end,spatial diversity was realized by means of cooperative communication technology based on the uncorrelated characteristics of the channels.The model of mobile communication system in high-speed railway was set up,and a cooperative scheme based on statistics was proposed.Mathematical analysis and simulation results show that the quality of the received signal and the performance of the transmission link are significantly improved using cooperative communication technology compared to that in non-cooperative communication mode.展开更多
The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicl...The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicles is a very challenging task due to hostile transmission channel conditions. The demand for such services is growing rapidly, following the proliferation of laptop/tablet computers and smart phones. This motivates the research on wireless communications in the high mobility environments.展开更多
In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circu...In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circular or linear,is considered.Based on the elliptical coverage cell,an optimization problem for the beamforming design is formulated to maximize the percentage of railway coverage,subject to the constraints on equal expected designed propagation gain(the gain obtained by a combination of designed beam and propagation channel)on the elliptical curve,i.e.,the expectation of designed propagation gain on the elliptical curve are all equal.Considering that the coverage can be improved by increasing the minimum designed propagation gain on the railway,the problem can be recast to maximizing the equal expected designed propagation gain on the elliptical curve.Subsequently,a beamforming design with an improved β-fairness power allocation,where the optimization problem is formulated to maximize the minimum expected received power over time with the constraints on elliptical cell based beamforming and mobile service amount,is proposed to further improve the coverage.An alternating iteration algorithm is developed to find the optimal beamforming vector and the instantaneous transmit power.Through numerical results,it is found that the beamforming designed on the elliptical curve covers longer railway than beamforming designed on the railway directly,and the coverage of elliptical cell based beamforming can be increased with the eccentricity.In addition,beamforming with the improvedβ-fairness power allocation can further improve the railway coverage and mobile service amount simultaneously.Moreover,it is shown that the larger eccentricity of the ellipse with appropriately chosen BS location,the larger coverage distance.展开更多
Admission control in high-speed train communication system is quite different from admission control in traditional cellular networks. Conventional admission control strategies cannot be directly applied to this speci...Admission control in high-speed train communication system is quite different from admission control in traditional cellular networks. Conventional admission control strategies cannot be directly applied to this special communication scenario. In this paper, the problem of admission control for handover service is investigated in high-speed train communication environment. An admission control scheme considering bit error rate(BER)and bandwidth borrowing strategy is proposed. On the basis of admission control decision rule taking BER into account, a part of bandwidth obtained by compressing variable rate service in the networks is provided for handover services. The admission control scheme can admit handover services as more as possible while it guarantees the lowest data rate of different services in the networks. Simulation results show that the proposed admission control scheme has a better performance than existing admission control schemes.展开更多
With the increasing utilization of High-Speed Trains (HSTs), the need for a reliable and high-bandwidth Internet access under high-speed mobility scenarios has become more demanding. In static, walking, and low mobi...With the increasing utilization of High-Speed Trains (HSTs), the need for a reliable and high-bandwidth Internet access under high-speed mobility scenarios has become more demanding. In static, walking, and low mobility environments, TCP/IP (transmission control protocol/Internet protocol) can work well. However, TCP/IP cannot work well in high-speed scenarios because of reliability and handoff delay problems. This is mainly because the mobile node is required to maintain the connection to the corresponding node when it handovers to another access point node. In this paper, we propose a named data networking wireless mesh network architecture for HST wireless communication (NDN-Mesh-T), which combines the advantages of Wireless Mesh Networks (WMNs) and NDN architectures. We attempt to solve the reliability and handoff delay problems to enable high bandwidth and low latency in Internet access in HST scenarios. To further improve reliability and bandwidth utilization, we propose a Direction-Aware Forwarding (DAF) strategy to forward Interest packet along the direction of the running train. The simulation results show that the proposed scheme can significantly reduce the packet loss rate by up to 51% compared to TCP/IP network architecture. Moreover, the proposed mechanism can reduce the network load, handoff delay, and data redundancy.展开更多
基金Project of Science and Technology Research and Development Plan of China Railway Corporation(No.2013G010-D)Foundation of a Hundred Youth Talent Training Program of Lanzhou Jiaotong University
文摘The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receiving end,spatial diversity was realized by means of cooperative communication technology based on the uncorrelated characteristics of the channels.The model of mobile communication system in high-speed railway was set up,and a cooperative scheme based on statistics was proposed.Mathematical analysis and simulation results show that the quality of the received signal and the performance of the transmission link are significantly improved using cooperative communication technology compared to that in non-cooperative communication mode.
基金supported by the Major State Basic Research Development Program of China(973 Program No.2012CB316100)the National Natural Science Foundation of China(NSFC No.61032002)the Innovative Intelligence Base Project(111 Project No.111-2-14)
文摘The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicles is a very challenging task due to hostile transmission channel conditions. The demand for such services is growing rapidly, following the proliferation of laptop/tablet computers and smart phones. This motivates the research on wireless communications in the high mobility environments.
基金This work has been supported in part by the National Natural Science Foundation of China(61671205)in part by the Shanghai Rising-Star Program(21QA1402700)in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University(No.2020D02).
文摘In this paper,a beamforming scheme to improve the coverage in high-speed railway communication systems is investigated.A dedicated coverage model,where the coverage cell is an ellipse rather than the traditional circular or linear,is considered.Based on the elliptical coverage cell,an optimization problem for the beamforming design is formulated to maximize the percentage of railway coverage,subject to the constraints on equal expected designed propagation gain(the gain obtained by a combination of designed beam and propagation channel)on the elliptical curve,i.e.,the expectation of designed propagation gain on the elliptical curve are all equal.Considering that the coverage can be improved by increasing the minimum designed propagation gain on the railway,the problem can be recast to maximizing the equal expected designed propagation gain on the elliptical curve.Subsequently,a beamforming design with an improved β-fairness power allocation,where the optimization problem is formulated to maximize the minimum expected received power over time with the constraints on elliptical cell based beamforming and mobile service amount,is proposed to further improve the coverage.An alternating iteration algorithm is developed to find the optimal beamforming vector and the instantaneous transmit power.Through numerical results,it is found that the beamforming designed on the elliptical curve covers longer railway than beamforming designed on the railway directly,and the coverage of elliptical cell based beamforming can be increased with the eccentricity.In addition,beamforming with the improvedβ-fairness power allocation can further improve the railway coverage and mobile service amount simultaneously.Moreover,it is shown that the larger eccentricity of the ellipse with appropriately chosen BS location,the larger coverage distance.
基金the National Natural Science Foundation of China(Nos.61302080 and 61271182)the Scientific Research Starting Foundation of Fuzhou University(No.022572)
文摘Admission control in high-speed train communication system is quite different from admission control in traditional cellular networks. Conventional admission control strategies cannot be directly applied to this special communication scenario. In this paper, the problem of admission control for handover service is investigated in high-speed train communication environment. An admission control scheme considering bit error rate(BER)and bandwidth borrowing strategy is proposed. On the basis of admission control decision rule taking BER into account, a part of bandwidth obtained by compressing variable rate service in the networks is provided for handover services. The admission control scheme can admit handover services as more as possible while it guarantees the lowest data rate of different services in the networks. Simulation results show that the proposed admission control scheme has a better performance than existing admission control schemes.
基金supported by the National Natural Science Foundation of China (No. 61309025)the Hunan Provincial Natural Science Foundation of China (No. 2017JJ2332)+1 种基金the National Key Technology R&D Program (No. 2015BAH05F02)the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts146)
文摘With the increasing utilization of High-Speed Trains (HSTs), the need for a reliable and high-bandwidth Internet access under high-speed mobility scenarios has become more demanding. In static, walking, and low mobility environments, TCP/IP (transmission control protocol/Internet protocol) can work well. However, TCP/IP cannot work well in high-speed scenarios because of reliability and handoff delay problems. This is mainly because the mobile node is required to maintain the connection to the corresponding node when it handovers to another access point node. In this paper, we propose a named data networking wireless mesh network architecture for HST wireless communication (NDN-Mesh-T), which combines the advantages of Wireless Mesh Networks (WMNs) and NDN architectures. We attempt to solve the reliability and handoff delay problems to enable high bandwidth and low latency in Internet access in HST scenarios. To further improve reliability and bandwidth utilization, we propose a Direction-Aware Forwarding (DAF) strategy to forward Interest packet along the direction of the running train. The simulation results show that the proposed scheme can significantly reduce the packet loss rate by up to 51% compared to TCP/IP network architecture. Moreover, the proposed mechanism can reduce the network load, handoff delay, and data redundancy.