Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer...Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.展开更多
As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of con...As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.展开更多
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe...Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.展开更多
Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- ti...Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.展开更多
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the...The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future.展开更多
Large-scale transportation infrastructure construction in ecologically vulnerable areas such as the karst region of Southwest China requires estimation method for better project design.This research was carried out on...Large-scale transportation infrastructure construction in ecologically vulnerable areas such as the karst region of Southwest China requires estimation method for better project design.This research was carried out on a four-lane highway(the Guilin-Guiyang highway,G76)and a two-lane highspeed railway(the Guilin-Guiyang high-speed railway,GGHSR)in karst areas in Guizhou and Guangxi provinces.The highway and high-speed railway were constructed in the 2010 s and covered by Landsat images whose multispectral information could be used for research purposes.In this study,the severity of the impact and the CO2 emissions from the G76 and GGHSR construction were evaluated.Landsat images and field meteorological measurements were applied to calculate the surface functional parameters(surface temperature and surface wetness)and heat fluxes(latent,sensible and ground heat flux)before and during the highway and high-speed railway construction;the amount of CO2 emissions during the G76 and GGHSR construction were determined by using budget sheets,which record the detail consumptions of materials and energy.The results showed that the decrease of water evaporation from the highway and high-speed railway construction can reach up to 26.4 m3 and 20.1 m3 per kilometer,which corresponds to an average decrease in the vegetation cooling effect of 18.0 MWh per day per highway kilometer and 13.7 MWh per day per high-speed railway kilometer,respectively.At the meantime,the average CO2 emission densities from the G76 and GGHSR construction can reach up to 24813.7 and 36921.1 t/km,respectively.This study implied that extensive line constructions have a significant impact on the local climate and the energy balance,and it is evident that selecting and planting appropriate plant species can compensate for the adverse effects of line constructions in karst mountain regions.展开更多
High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable fo...High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable for the national conditions in China.The authors suggest that, with the Hu-Ning (Shanghai-Nanjing) section of the Jing-Hu (Beijing-Shanghai) Railway as the starting point, a high-speed dedicated passenger railway line be built to realize the separate transportation of passengers and goods, thus easing the strain on transport in East China, accumulating experience for the future development of high-speed railways, and bringing along the development of high and new technology industries.展开更多
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ...Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.展开更多
Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressu...Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.展开更多
The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstruct...The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstructured grid and the experimental results of smooth wall tunnel were verified.Numerical simulation studies were conducted on three tunnel enlarged section parameters,the enlarged section distribution along circumferential direction,the enlarged section area and the enlarged section distribution along tunnel length direction.The calculation results show that the influence of the different enlarged section distributions along tunnel circumferential direction on pressure transients in the tunnel is basically consistent.There is an optimal enlarged section area for the minimum value of the pressure variation amplitude and the average pressure variation in the tunnel.The law of the pressure variation amplitude and the average pressure variation of the enlarged section distribution along tunnel length direction are obtained.展开更多
In this paper, a 3D finite element (FE) program ADINA was applied to analyzing a tunnel with 9 segment tings. The loads acting on these segment tings included the squeezing action of tail brush of shield machine und...In this paper, a 3D finite element (FE) program ADINA was applied to analyzing a tunnel with 9 segment tings. The loads acting on these segment tings included the squeezing action of tail brush of shield machine under attitude deflection, the jacking forces, the grouting pressure and the soil pressure. The analyses focused on the rebar stress in two statuses: (1) normal construction status without shield machine squeezing; (2) squeezing action induced by shield machine under attitude deflection. The analyses indicated that the rebar stress was evidently affected by the construction loads. In different construction status, the rebar stress ranges from -80 MPa to 50 MPa, and the rebar is in elastic status. Even some cracks appear on segments, the stress of segment rebar is still at a low level. It is helpful to incorporate a certain quantity of steel fiber to improve the anti-crack and shock resistance performance.展开更多
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha...A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.展开更多
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav...Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.展开更多
Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the ...Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the waveforms and peak-peak values of pressure fluctuations between numerical simulation and moving model test,the structured grid and the SST k-ωturbulence model are selected for numerical simulating the process of high-speed train passing through the tunnel.The largest value of pressure wave amplitudes of numerical simulation and moving model test meet each other.And the locations of the largest value of the initial compression and expansion wave amplitude of numerical simulation are in agreement with that of moving model test.The calculated pressure at the measurement point fully conforms to the propagation law of compression and expansion waves in the tunnel.展开更多
The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are...The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues.In this paper,two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains.These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh.The fluctuating pressure,flow field and aerodynamic noise source are numerically simulated using the abovemethods.The results showthat the fluctuating pressure,flow field structure and noise source characteristics obtained using different methods,are basically consistent.Compared to the dynamic mesh method,the pressure,vortex size and noise source radiation intensity,obtained by the static method,are larger.The differences are in the tail car and its wake.The two calculation methods show that the spectral characteristics of the surface noise source are consistent.The maximum difference in the sound pressure level is 1.9 dBA.The static method is more efficient and more suitable for engineering applications.展开更多
Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic est...Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic estimation of ground condition and construction time and costs is proposed, which is an integration of the ground prediction approach based on Markov process, and the time and cost variance analysis based on Monte-Carlo (MC) simulation. The former provides the probabilistic description of ground classification along tunnel alignment according to the geological information revealed from geological profile and boreholes. The latter provides the probabilistic description of the expected construction time and costs for each operation according to the survey feedbacks from experts. Then an engineering application to Hamro tunnel is presented to demonstrate how the ground condition and the construction time and costs are estimated in a probabilistic way. In most items, in order to estimate the data needed for this methodology, a number of questionnaires are distributed among the tunneling experts and finally the mean values of the respondents are applied. These facilitate both the owners and the contractors to be aware of the risk that they should carry before construction, and are useful for both tendering and bidding.展开更多
By integrating literature reviews, site observa- tion, field monitoring, theoretical analysis, summarization, etc., a construction strategy was proposed and verified for tunneling with big deformation in this paper. T...By integrating literature reviews, site observa- tion, field monitoring, theoretical analysis, summarization, etc., a construction strategy was proposed and verified for tunneling with big deformation in this paper. The tunnel was in phyllite, shotcrete cracks and steel arch distortion were observed, and a big deformation with a maximum of 2.0 m was monitored during the initial stage of the construction. Through carefully examining the site observation and laboratory test results, a construction principle was established for the tunneling on the basic concept of maintaining the rock strength/stiffness and keeping the rock dry, by providing confinement pressure to the rock, reducing the rock exposure time, keeping water out of the tunnel, etc. To achieve the construction principle, a set of specific construction measures with 11 items was further proposed and applied to the construction. To check the effectiveness of the construction measures, field monitoring was carried out, which showed that the rock deformation was well controlled and the tunnel became stable. An allowable deformation was then determined using the Fenner formulae and the monitored data in order to guide further construction, which received a good result. From this study, it can be concluded that providing quick strong initial support and reserving core soil at the working faceare extremely important to control the rock deformation and keep the tunnel stable.展开更多
The New Austrian Tunneling Method (NATM) has been widely used in the construction of mountain tun- nels, urban metro lines, underground storage tanks, underground power houses, mining roadways, and so on, The variat...The New Austrian Tunneling Method (NATM) has been widely used in the construction of mountain tun- nels, urban metro lines, underground storage tanks, underground power houses, mining roadways, and so on, The variation patterns of advance geological prediction data, stress-strain data of supporting struc- tures, and deformation data of the surrounding rock are vitally important in assessing the rationality and reliability of construction schemes, and provide essential information to ensure the safety and scheduling of tunnel construction, However, as the quantity of these data increases significantly, the uncertainty and discreteness of the mass data make it extremely difficult to produce a reasonable con- struction scheme; they also reduce the forecast accuracy of accidents and dangerous situations, creating huge challenges in tunnel construction safety, In order to solve this problem, a novel data service system is proposed that uses data-association technology and the NATM, with the support of a big data environ- ment, This system can integrate data resources from distributed monitoring sensors during the construc- tion process, and then identify associations and build relations among data resources under the same construction conditions, These data associations and relations are then stored in a data pool, With the development and supplementation of the data pool, similar relations can then he used under similar con- ditions, in order to provide data references for construction schematic designs and resource allocation, The proposed data service system also provides valuable guidance for the construction of similar projects.展开更多
This study tried to explore the ground movement induced by triple stacked tunneling(TST) with different construction sequences. A case study in Tianjin, China was used to investigate the ground movement during the TST...This study tried to explore the ground movement induced by triple stacked tunneling(TST) with different construction sequences. A case study in Tianjin, China was used to investigate the ground movement during the TST(upper tunneling(UT)). For this, a modified Peck formula was proposed to predict the surface settlement induced by TST. Next, three sets of finite element analyses(FEA) were used to compare the effects of construction sequences(i.e. UT, middle tunneling(MT), and lower tunneling(LT)) on vertical and lateral ground displacements. The results of Tianjin case and UT reveal that compared to a Gaussian distribution for a single tunnel, the surface settlement curve of triple stacked tunnels is a bimodal distribution. It seems that the proposed modified Peck formula can effectively predict the surface settlement induced by TST. The results of the three sets of FEA demonstrate that the construction sequence has a significant influence on the ground movement. Among the three construction sequences, the largest lateral displacement is observed in the MT and the smallest one in UT.The existing tunnel has an inhibitory effect on the vertical displacement. The maximum value of the lateral displacement occurs at the depth of the new tunnel in each construction sequence.展开更多
Pre-geological prediction (PGP) is defined as the prediction of engineering geologic condition and hy-drogeological condition certain distance ahead of the working face. The purpose of this paper is to introduce mainl...Pre-geological prediction (PGP) is defined as the prediction of engineering geologic condition and hy-drogeological condition certain distance ahead of the working face. The purpose of this paper is to introduce mainlygeologic survey before and in excavation, to clarify their emphasis on PGP. At the same time, the technique is appliedto an engineering case, the longest highway tunnel in Gansu province. Data of geological survey of outside tunnels,sound wave detection, and geologic sketch for both tunnel face and sidewalls within the tunnel are analyzed. Afteranalyzing these data, long-term pre-geological prediction forecasting basic geological conditions of fault 4 such aslithology, scope, location, etc., and short-term and more accurate pre-geological prediction are reported.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 52072267)Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems (Grant No. 23DZ2229029)
文摘Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.
文摘As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.
文摘Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.
文摘Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.
文摘The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future.
基金funded by the Science and Technology Department of Guizhou Province (No. [2019]1427)Guizhou Provincial Forestry Department (No. [2017]15)National key research and development program of China (No.2016YFC0502605)
文摘Large-scale transportation infrastructure construction in ecologically vulnerable areas such as the karst region of Southwest China requires estimation method for better project design.This research was carried out on a four-lane highway(the Guilin-Guiyang highway,G76)and a two-lane highspeed railway(the Guilin-Guiyang high-speed railway,GGHSR)in karst areas in Guizhou and Guangxi provinces.The highway and high-speed railway were constructed in the 2010 s and covered by Landsat images whose multispectral information could be used for research purposes.In this study,the severity of the impact and the CO2 emissions from the G76 and GGHSR construction were evaluated.Landsat images and field meteorological measurements were applied to calculate the surface functional parameters(surface temperature and surface wetness)and heat fluxes(latent,sensible and ground heat flux)before and during the highway and high-speed railway construction;the amount of CO2 emissions during the G76 and GGHSR construction were determined by using budget sheets,which record the detail consumptions of materials and energy.The results showed that the decrease of water evaporation from the highway and high-speed railway construction can reach up to 26.4 m3 and 20.1 m3 per kilometer,which corresponds to an average decrease in the vegetation cooling effect of 18.0 MWh per day per highway kilometer and 13.7 MWh per day per high-speed railway kilometer,respectively.At the meantime,the average CO2 emission densities from the G76 and GGHSR construction can reach up to 24813.7 and 36921.1 t/km,respectively.This study implied that extensive line constructions have a significant impact on the local climate and the energy balance,and it is evident that selecting and planting appropriate plant species can compensate for the adverse effects of line constructions in karst mountain regions.
文摘High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable for the national conditions in China.The authors suggest that, with the Hu-Ning (Shanghai-Nanjing) section of the Jing-Hu (Beijing-Shanghai) Railway as the starting point, a high-speed dedicated passenger railway line be built to realize the separate transportation of passengers and goods, thus easing the strain on transport in East China, accumulating experience for the future development of high-speed railways, and bringing along the development of high and new technology industries.
基金the National Natural Science Foundation of China(Grant Nos. 51278423 and 51478395)for its financial support
文摘Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.
基金Projects(U1134203,51575538)supported by the National Natural Science Foundation of ChinaProject(2014T001-A)supported by the Technological Research and Development Program of China Railways CorporationProject(2015ZZTS210)supported by the Fundamental Research Funds for the Central South Universities of China
文摘Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.
基金Project (2016YFB1200602-11) supported by National Key R&D Plan of China
文摘The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstructured grid and the experimental results of smooth wall tunnel were verified.Numerical simulation studies were conducted on three tunnel enlarged section parameters,the enlarged section distribution along circumferential direction,the enlarged section area and the enlarged section distribution along tunnel length direction.The calculation results show that the influence of the different enlarged section distributions along tunnel circumferential direction on pressure transients in the tunnel is basically consistent.There is an optimal enlarged section area for the minimum value of the pressure variation amplitude and the average pressure variation in the tunnel.The law of the pressure variation amplitude and the average pressure variation of the enlarged section distribution along tunnel length direction are obtained.
文摘In this paper, a 3D finite element (FE) program ADINA was applied to analyzing a tunnel with 9 segment tings. The loads acting on these segment tings included the squeezing action of tail brush of shield machine under attitude deflection, the jacking forces, the grouting pressure and the soil pressure. The analyses focused on the rebar stress in two statuses: (1) normal construction status without shield machine squeezing; (2) squeezing action induced by shield machine under attitude deflection. The analyses indicated that the rebar stress was evidently affected by the construction loads. In different construction status, the rebar stress ranges from -80 MPa to 50 MPa, and the rebar is in elastic status. Even some cracks appear on segments, the stress of segment rebar is still at a low level. It is helpful to incorporate a certain quantity of steel fiber to improve the anti-crack and shock resistance performance.
基金supported by a Major Programme of the National Science and Technology Support,China Grant(2013BAG24B00),under the project“Key technologies and engineering application demonstration of High-speed train for energy saving”.
文摘A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.
基金Supported by National Natural Science Foundation of China(No.90815019)National Key Basic Research Program of China("973" Program,No.2007CB714101)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No.2006BAB04A13)
文摘Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.
文摘Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the waveforms and peak-peak values of pressure fluctuations between numerical simulation and moving model test,the structured grid and the SST k-ωturbulence model are selected for numerical simulating the process of high-speed train passing through the tunnel.The largest value of pressure wave amplitudes of numerical simulation and moving model test meet each other.And the locations of the largest value of the initial compression and expansion wave amplitude of numerical simulation are in agreement with that of moving model test.The calculated pressure at the measurement point fully conforms to the propagation law of compression and expansion waves in the tunnel.
基金This work is supported by the National Key Research and Development Program of China(2020YFA0710902)Sichuan Science and Technology Program(2021YFG0214,2019YJ0227)+1 种基金Fundamental Research Funds for the Central Universities(2682021ZTPY124)State Key Laboratory of Traction Power(2019TPL_T02).
文摘The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues.In this paper,two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains.These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh.The fluctuating pressure,flow field and aerodynamic noise source are numerically simulated using the abovemethods.The results showthat the fluctuating pressure,flow field structure and noise source characteristics obtained using different methods,are basically consistent.Compared to the dynamic mesh method,the pressure,vortex size and noise source radiation intensity,obtained by the static method,are larger.The differences are in the tail car and its wake.The two calculation methods show that the spectral characteristics of the surface noise source are consistent.The maximum difference in the sound pressure level is 1.9 dBA.The static method is more efficient and more suitable for engineering applications.
文摘Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic estimation of ground condition and construction time and costs is proposed, which is an integration of the ground prediction approach based on Markov process, and the time and cost variance analysis based on Monte-Carlo (MC) simulation. The former provides the probabilistic description of ground classification along tunnel alignment according to the geological information revealed from geological profile and boreholes. The latter provides the probabilistic description of the expected construction time and costs for each operation according to the survey feedbacks from experts. Then an engineering application to Hamro tunnel is presented to demonstrate how the ground condition and the construction time and costs are estimated in a probabilistic way. In most items, in order to estimate the data needed for this methodology, a number of questionnaires are distributed among the tunneling experts and finally the mean values of the respondents are applied. These facilitate both the owners and the contractors to be aware of the risk that they should carry before construction, and are useful for both tendering and bidding.
文摘By integrating literature reviews, site observa- tion, field monitoring, theoretical analysis, summarization, etc., a construction strategy was proposed and verified for tunneling with big deformation in this paper. The tunnel was in phyllite, shotcrete cracks and steel arch distortion were observed, and a big deformation with a maximum of 2.0 m was monitored during the initial stage of the construction. Through carefully examining the site observation and laboratory test results, a construction principle was established for the tunneling on the basic concept of maintaining the rock strength/stiffness and keeping the rock dry, by providing confinement pressure to the rock, reducing the rock exposure time, keeping water out of the tunnel, etc. To achieve the construction principle, a set of specific construction measures with 11 items was further proposed and applied to the construction. To check the effectiveness of the construction measures, field monitoring was carried out, which showed that the rock deformation was well controlled and the tunnel became stable. An allowable deformation was then determined using the Fenner formulae and the monitored data in order to guide further construction, which received a good result. From this study, it can be concluded that providing quick strong initial support and reserving core soil at the working faceare extremely important to control the rock deformation and keep the tunnel stable.
文摘The New Austrian Tunneling Method (NATM) has been widely used in the construction of mountain tun- nels, urban metro lines, underground storage tanks, underground power houses, mining roadways, and so on, The variation patterns of advance geological prediction data, stress-strain data of supporting struc- tures, and deformation data of the surrounding rock are vitally important in assessing the rationality and reliability of construction schemes, and provide essential information to ensure the safety and scheduling of tunnel construction, However, as the quantity of these data increases significantly, the uncertainty and discreteness of the mass data make it extremely difficult to produce a reasonable con- struction scheme; they also reduce the forecast accuracy of accidents and dangerous situations, creating huge challenges in tunnel construction safety, In order to solve this problem, a novel data service system is proposed that uses data-association technology and the NATM, with the support of a big data environ- ment, This system can integrate data resources from distributed monitoring sensors during the construc- tion process, and then identify associations and build relations among data resources under the same construction conditions, These data associations and relations are then stored in a data pool, With the development and supplementation of the data pool, similar relations can then he used under similar con- ditions, in order to provide data references for construction schematic designs and resource allocation, The proposed data service system also provides valuable guidance for the construction of similar projects.
基金financially supported by the Open Project of the State Key Laboratory of Disaster Reduction in Civil Engineering (Grant No. SLDRCE17-01)the National Key Research and Development Program of China (Grant No.2017YFC0805402)the National Natural Science Foundation of China (Grant No. 51808387)。
文摘This study tried to explore the ground movement induced by triple stacked tunneling(TST) with different construction sequences. A case study in Tianjin, China was used to investigate the ground movement during the TST(upper tunneling(UT)). For this, a modified Peck formula was proposed to predict the surface settlement induced by TST. Next, three sets of finite element analyses(FEA) were used to compare the effects of construction sequences(i.e. UT, middle tunneling(MT), and lower tunneling(LT)) on vertical and lateral ground displacements. The results of Tianjin case and UT reveal that compared to a Gaussian distribution for a single tunnel, the surface settlement curve of triple stacked tunnels is a bimodal distribution. It seems that the proposed modified Peck formula can effectively predict the surface settlement induced by TST. The results of the three sets of FEA demonstrate that the construction sequence has a significant influence on the ground movement. Among the three construction sequences, the largest lateral displacement is observed in the MT and the smallest one in UT.The existing tunnel has an inhibitory effect on the vertical displacement. The maximum value of the lateral displacement occurs at the depth of the new tunnel in each construction sequence.
文摘Pre-geological prediction (PGP) is defined as the prediction of engineering geologic condition and hy-drogeological condition certain distance ahead of the working face. The purpose of this paper is to introduce mainlygeologic survey before and in excavation, to clarify their emphasis on PGP. At the same time, the technique is appliedto an engineering case, the longest highway tunnel in Gansu province. Data of geological survey of outside tunnels,sound wave detection, and geologic sketch for both tunnel face and sidewalls within the tunnel are analyzed. Afteranalyzing these data, long-term pre-geological prediction forecasting basic geological conditions of fault 4 such aslithology, scope, location, etc., and short-term and more accurate pre-geological prediction are reported.