[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to...[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).展开更多
The influence of formula fertilization optimization on dry rubber yield and economic benefits of the rubber plantation in Hainan Longjiang Farm were studied by using "contrast" design method of fertilizer field expe...The influence of formula fertilization optimization on dry rubber yield and economic benefits of the rubber plantation in Hainan Longjiang Farm were studied by using "contrast" design method of fertilizer field experiments. The results showed that the actual production rate reached 4.61% and the net production rate of dry rubber reached 3.97% by application of optimized fertilization formula. Analysis of variance showed that the average dry rubber yield in optimization of formula fertil- ization area was significantly higher than that of conventional area. The results also indicated that the optimization of formula fertilization had obvious economic benefits, and each rubber tree reduced cost and increased 9.95 yuan on average after the test.展开更多
[Objective] The paper was to analyze the quality of flux observation data of rubber plantation.[Method]Based on the FSAM model,footprint and flux source area were analyzed according to the continuous flux measurement ...[Objective] The paper was to analyze the quality of flux observation data of rubber plantation.[Method]Based on the FSAM model,footprint and flux source area were analyzed according to the continuous flux measurement with the open-path eddy covariance system on the 50 m tower of Danzhou Key Field Station of Observation and Research for Tropical Agricultural Resources and Environments,Ministry of Agriculture from Jan 1 to Jun 30,2010.[Result] Under unstable stratification,source areas were smaller than those under stable conditions,and source areas in the dormant season were larger than those in the growing season at the same level.In the main wind direction 130°-270°,the upwind range of source areas was in the magnitude of 100-758 m and vertical upwind range was-251-251 m at 80% level under unstable stratification in the growing season,and they were some large than those under the unstable stratification in the dormant season.The source areas of the upwind and vertical upwind ranges were 173-1 858,-534-534 m especially under stable stratification in the growing season,and they were smaller than those under stable stratification in the dormant season.In the other wind directions of 0°-130° and 270°-360°,the ranges were similar to those of the growing season in the prevailing wind direction under the same atmospheric conditions.[Conclusion] The study would lay a foundation for the future flux calculation and analysis.展开更多
The impacts of economic forest on global environmental change(GEC) are one of the hot issues in environmental study. Based on the 3 year observation data and 40 year climate data, GEC and analysis of the hydrologica...The impacts of economic forest on global environmental change(GEC) are one of the hot issues in environmental study. Based on the 3 year observation data and 40 year climate data, GEC and analysis of the hydrological dynamic characteristics of rubber plantations and estimate of the water balance in the rubber plantations in Hainan Island were made. The results showed that the rainfall intercepted by the canopy of the plantations accounted for 11 45% of the annual rainfall, the total runoff for 23 71%, the total evaporation and transpiration for 63 24%, the soil moisture storage for 1 6%. Analysis of the 40 year rainfall data in the 19 counties of Hainan Island during 1951—1990 showed that the large scale substitution of the natural vegetation with the rubber plantations had no significant effect on the local rainfall in Hainan Island. The main reasons are (1) 80% of the rainfall in Hainan is brought by typhoons; (2) the proportion of 11 6% rubber plantations in total forest coverage in Hainan is not enough to influence the local rainfall in Hainan Island; and (3) although the rubber plantation is artificial vegetation, it has the similar function to the tropical rain forest. Analysis of the total water resource and total GDP of Hainan in 1997 showed that the economic benefit resulted from the water resource was 1 0 RMB Yuan/m 3 The value of hydrological of the rubber plantation in Hainan was 113 9 million RMB Yuan/a when compared with the tropical rain forest. The paper reaches conclusion that the hydrological eco service function of rubber plantation has been enhanced after transformed from natural vegetation, which includes the natural service and powerful social service.展开更多
This research was designed to help solve existing sustainable use problems such as soil nutrient loss and soil fertility decline in natural rubber plantations located in the hilly land of the south central mountainous...This research was designed to help solve existing sustainable use problems such as soil nutrient loss and soil fertility decline in natural rubber plantations located in the hilly land of the south central mountainous area of Hainan Island, China. Two different land management practices, sustainable and traditional, were adopted in a four-year experiment. Contour terraced fields and deep ditches for green manure were built in a sustainable way with a balanced, need-based application of complex fertilizer. R…展开更多
Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO_2 levels. The conversion of tropical forests to ru...Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO_2 levels. The conversion of tropical forests to rubber plantations in SE Asia is increasingly common, and there is a need to understand the impacts of this land-use change on soil respiration in order to revise CO_2 budget calculations. This study focused on the spatial variability of soil respiration along a slope in a natural tropical rainforest and a terraced rubber plantation in Xishuangbanna, Southwest(SW) China. In each land-use type, we inserted 105 collars for soil respiration measurements.Research was conducted over one year in Xishuangbanna during May, June, July and October 2015(wet season) and January and March 2016(dry season). The mean annual soil respiration rate was 30% higher in natural forest than in rubber plantation and mean fluxes in the wet and dry season were 15.1 and 9.5 Mg C ha^(-1) yr^(-1) in natural forest and 11.7 and 5.7 Mg C ha^(-1) yr^(-1) in rubber plantation. Using a linear mixedeffects model to assess the effect of changes in soil temperature and moisture on soil respiration, we found that soil temperature was the main driver of variation in soil respiration, explaining 48% of its seasonal variation in rubber plantation and 30% in natural forest. After including soil moisture, the model explained 70% of the variation in soil respiration in natural forest and 76% in rubber plantation. In the natural forest slope position had a significant effect on soil respiration, and soil temperature and soil moisture gradients only partly explained this correlation. In contrast, soil respiration in rubber plantation was not affected by slope position, which may be due to the terrace structure that resulted in more homogeneous environmental conditions along the slope. Further research is needed to determine whether or not these findings hold true at a landscape level.展开更多
In this study, tropical peat swamp soils from Giam Siak Kecil-Bukit Batu Biosphere Reserve (GSKBB) in Indonesia was evaluated to assess the impact of oil palm and rubber plantations on this unique organic soil through...In this study, tropical peat swamp soils from Giam Siak Kecil-Bukit Batu Biosphere Reserve (GSKBB) in Indonesia was evaluated to assess the impact of oil palm and rubber plantations on this unique organic soil through comparisons with soils from a natural forest using a polyphasic approach (chemical and molecular microbial assays). Changes in the ammonium, nitrate and phosphate concentration were observed in soils converted to agricultural use. Soil enzyme activities in plantation soils showed reduced β-glucosidase, cellobiohydrolase and acid phosphatase activities (50% - 55% decrease). PCR-DGGE based analysis showed that the soil bacterial community from agricultural soils exhibited the lowest similarity amongst the different microbial groups (fungi and Archaea) evaluated (34% similarity to the natural forest soil). Shannon Diversity index values showed that generally the conversion of tropical peatland natural forest to rubber plantation resulted in a greater impact on microbial diversity (ANOVA p < 0.05). Overall, this study indicated substantial shifts in the soil microbial activity and diversity upon conversion of natural peatland forest to agriculture, with a greater change being observed under rubber plantation compared to oil palm plantation. These findings provided important data for future peatland management by relating changes in the soil microbial community and activities associated to agricultural practices carried out on peatland.展开更多
Hainan Island is located in the northern periphery of the tropical world.The environment is suitable for a number of tropical economic crops.The content of soil organic matter under rubber plantation is around 10- 20 ...Hainan Island is located in the northern periphery of the tropical world.The environment is suitable for a number of tropical economic crops.The content of soil organic matter under rubber plantation is around 10- 20 g kg-1.Cu,Zn,Mn,As,Mg,Ca and K in the soil profile reflect the parent material and the intensive weathering and leaching in the area.Copper has noticeably accumulated in the lower horizon,whereas the concentrations of Ca,Mg and K.in rubber trees are 0.5- 4.9,2.2- 4.3 and 4.6-10.2 g kg-1respectively.These three elements are mostly distributed in the plant roots and are particularly required during the development of new leaves early in the season.展开更多
Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, ...Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, “CATAS7-20-59”, “PR107”, “RRIM600”, “GT1”, “INA873”, “93-114”in South China. The results showed that there were six kinds of existing plant types of rubber tree after planting of rubber plantations, which were available tapping trees, wind damaged trees, cold damaged trees, tapping panel dryness trees, absent trees and weak trees, respectively. These data investigated also showed rubber trees under available tapping, stoppage due to tapping panel dryness, absence, wind damage, cold damage and weakness were counted and calculated and made up for 72.21%, 14.75%, 5.61%, 3.86%, 2.68% and 1.89%. Tapping panel dryness trees, wind damage and absent trees are major factors for the loss of tapping rubber trees in the rubber plantations. Of these investigated varieties, available tapping trees per 100 trees of rubber plantation of “PR107”at the 1st, 12th, 14th, 16th, 20th, 24th tapping year were 96, 67, 70, 75, 66, 46 trees in Hainan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “RRIM600”at the 9th, 15th, 20th, 22nd tapping year were 88, 62, 55, 36 trees in Yunnan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “93-114” at the 10th, 19th, tapping year were 94, 62 trees in Guangdong planting zone. These results showed that available tapping trees of rubber plantation decreased with increasing tapping age under different planting zones in China.展开更多
Rubber plantations have increased signifcantly under unprecedented economic growth in tropical areas,which leads to soil degradation and thereby alters soil hydrological processes.However,our understanding of how fore...Rubber plantations have increased signifcantly under unprecedented economic growth in tropical areas,which leads to soil degradation and thereby alters soil hydrological processes.However,our understanding of how forest conversion affects soil hydrological processes remains unclear.Here,we collected soil samples from secondary forests(SF)and rubber plantations(RP)to determine the soil hydrological characteristics.We found the topsoil(0-20 cm)water retention in SF was higher than that of RP but displayed the contrast pattern in a deeper soil layer(20-60 cm).Meanwhile,the soil infltration rates among the two vegetation types decreased signifcantly with infltration time,with higher stable soil infltration rates in SF than those in RP.Moreover,soil properties were also impacted by the forest conversion,such as the topsoil capillary porosity(CP)and total porosity(TP)in SF were higher than those of RP but contrasted in a deep soil layer.In comparison,the topsoil bulk density(BD)in SF was lower than that of RP,but contrasted in the deep soil layer and reached a signifcant level in the 0-10 and 40-50 cm(P<0.05).Overall,the soil water retention was mainly determined by the CP,which could explain 31.56%of the total variance in soil water retention,followed by TP(26.57%)and soil BD(26.47%),whereas soil texture exerts a weak effect on soil water retention.Therefore,we can conclude that the conversion of tropical rainforest into rubber plantations may accelerate soil erosion owing to its lower topsoil water retention and soil infltration rates.展开更多
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re...Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.展开更多
基金Supported by the Project of the Basic Research Operation Cost of State Level Research Institutes "Long-term Location Investigation of Basic Data for Rubber Production " ( XJSYWFZX-2008-14 and XJSYWFZX-2007-2)the Project Natural Sciences Fund of Hainan Province (807045)~~
文摘[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).
基金Supported by Key Science and Technology Project of Hainan Land Reclamation Bureau([2009]57)~~
文摘The influence of formula fertilization optimization on dry rubber yield and economic benefits of the rubber plantation in Hainan Longjiang Farm were studied by using "contrast" design method of fertilizer field experiments. The results showed that the actual production rate reached 4.61% and the net production rate of dry rubber reached 3.97% by application of optimized fertilization formula. Analysis of variance showed that the average dry rubber yield in optimization of formula fertil- ization area was significantly higher than that of conventional area. The results also indicated that the optimization of formula fertilization had obvious economic benefits, and each rubber tree reduced cost and increased 9.95 yuan on average after the test.
基金Supported by the Fundamental Research Funds for Rubber Research Institute,CATAS (1630022011013 )Hainan Natural Science Foundation (807045)Running Costs of Danzhou Key Field Station of Observation and Research for Tropical Agricultural Resources and Environments,Ministry of Agriculture~~
文摘[Objective] The paper was to analyze the quality of flux observation data of rubber plantation.[Method]Based on the FSAM model,footprint and flux source area were analyzed according to the continuous flux measurement with the open-path eddy covariance system on the 50 m tower of Danzhou Key Field Station of Observation and Research for Tropical Agricultural Resources and Environments,Ministry of Agriculture from Jan 1 to Jun 30,2010.[Result] Under unstable stratification,source areas were smaller than those under stable conditions,and source areas in the dormant season were larger than those in the growing season at the same level.In the main wind direction 130°-270°,the upwind range of source areas was in the magnitude of 100-758 m and vertical upwind range was-251-251 m at 80% level under unstable stratification in the growing season,and they were some large than those under the unstable stratification in the dormant season.The source areas of the upwind and vertical upwind ranges were 173-1 858,-534-534 m especially under stable stratification in the growing season,and they were smaller than those under stable stratification in the dormant season.In the other wind directions of 0°-130° and 270°-360°,the ranges were similar to those of the growing season in the prevailing wind direction under the same atmospheric conditions.[Conclusion] The study would lay a foundation for the future flux calculation and analysis.
文摘The impacts of economic forest on global environmental change(GEC) are one of the hot issues in environmental study. Based on the 3 year observation data and 40 year climate data, GEC and analysis of the hydrological dynamic characteristics of rubber plantations and estimate of the water balance in the rubber plantations in Hainan Island were made. The results showed that the rainfall intercepted by the canopy of the plantations accounted for 11 45% of the annual rainfall, the total runoff for 23 71%, the total evaporation and transpiration for 63 24%, the soil moisture storage for 1 6%. Analysis of the 40 year rainfall data in the 19 counties of Hainan Island during 1951—1990 showed that the large scale substitution of the natural vegetation with the rubber plantations had no significant effect on the local rainfall in Hainan Island. The main reasons are (1) 80% of the rainfall in Hainan is brought by typhoons; (2) the proportion of 11 6% rubber plantations in total forest coverage in Hainan is not enough to influence the local rainfall in Hainan Island; and (3) although the rubber plantation is artificial vegetation, it has the similar function to the tropical rain forest. Analysis of the total water resource and total GDP of Hainan in 1997 showed that the economic benefit resulted from the water resource was 1 0 RMB Yuan/m 3 The value of hydrological of the rubber plantation in Hainan was 113 9 million RMB Yuan/a when compared with the tropical rain forest. The paper reaches conclusion that the hydrological eco service function of rubber plantation has been enhanced after transformed from natural vegetation, which includes the natural service and powerful social service.
基金1Project supported by the United Nations Development Program.
文摘This research was designed to help solve existing sustainable use problems such as soil nutrient loss and soil fertility decline in natural rubber plantations located in the hilly land of the south central mountainous area of Hainan Island, China. Two different land management practices, sustainable and traditional, were adopted in a four-year experiment. Contour terraced fields and deep ditches for green manure were built in a sustainable way with a balanced, need-based application of complex fertilizer. R…
基金the BMZ/GIZ “Green Rubber” (Project No. Project No. 13.1432.7-001.00)the CGIAR (Consultative Group for International Agricultural Research) Research Program 6: Forests, Trees and Agroforestry+2 种基金financially supported by the Federal Ministry for Economic Cooperation and Development, Germanyfunded by the National Natural Science Foundation of China (Grant No. 31450110067) the Chinese Academy of Science funded the Chinese Academy of Science funded the post-doc fellowship for Stefanie Goldberg (Grant No. 2013Y2SB0007)
文摘Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO_2 levels. The conversion of tropical forests to rubber plantations in SE Asia is increasingly common, and there is a need to understand the impacts of this land-use change on soil respiration in order to revise CO_2 budget calculations. This study focused on the spatial variability of soil respiration along a slope in a natural tropical rainforest and a terraced rubber plantation in Xishuangbanna, Southwest(SW) China. In each land-use type, we inserted 105 collars for soil respiration measurements.Research was conducted over one year in Xishuangbanna during May, June, July and October 2015(wet season) and January and March 2016(dry season). The mean annual soil respiration rate was 30% higher in natural forest than in rubber plantation and mean fluxes in the wet and dry season were 15.1 and 9.5 Mg C ha^(-1) yr^(-1) in natural forest and 11.7 and 5.7 Mg C ha^(-1) yr^(-1) in rubber plantation. Using a linear mixedeffects model to assess the effect of changes in soil temperature and moisture on soil respiration, we found that soil temperature was the main driver of variation in soil respiration, explaining 48% of its seasonal variation in rubber plantation and 30% in natural forest. After including soil moisture, the model explained 70% of the variation in soil respiration in natural forest and 76% in rubber plantation. In the natural forest slope position had a significant effect on soil respiration, and soil temperature and soil moisture gradients only partly explained this correlation. In contrast, soil respiration in rubber plantation was not affected by slope position, which may be due to the terrace structure that resulted in more homogeneous environmental conditions along the slope. Further research is needed to determine whether or not these findings hold true at a landscape level.
文摘In this study, tropical peat swamp soils from Giam Siak Kecil-Bukit Batu Biosphere Reserve (GSKBB) in Indonesia was evaluated to assess the impact of oil palm and rubber plantations on this unique organic soil through comparisons with soils from a natural forest using a polyphasic approach (chemical and molecular microbial assays). Changes in the ammonium, nitrate and phosphate concentration were observed in soils converted to agricultural use. Soil enzyme activities in plantation soils showed reduced β-glucosidase, cellobiohydrolase and acid phosphatase activities (50% - 55% decrease). PCR-DGGE based analysis showed that the soil bacterial community from agricultural soils exhibited the lowest similarity amongst the different microbial groups (fungi and Archaea) evaluated (34% similarity to the natural forest soil). Shannon Diversity index values showed that generally the conversion of tropical peatland natural forest to rubber plantation resulted in a greater impact on microbial diversity (ANOVA p < 0.05). Overall, this study indicated substantial shifts in the soil microbial activity and diversity upon conversion of natural peatland forest to agriculture, with a greater change being observed under rubber plantation compared to oil palm plantation. These findings provided important data for future peatland management by relating changes in the soil microbial community and activities associated to agricultural practices carried out on peatland.
文摘Hainan Island is located in the northern periphery of the tropical world.The environment is suitable for a number of tropical economic crops.The content of soil organic matter under rubber plantation is around 10- 20 g kg-1.Cu,Zn,Mn,As,Mg,Ca and K in the soil profile reflect the parent material and the intensive weathering and leaching in the area.Copper has noticeably accumulated in the lower horizon,whereas the concentrations of Ca,Mg and K.in rubber trees are 0.5- 4.9,2.2- 4.3 and 4.6-10.2 g kg-1respectively.These three elements are mostly distributed in the plant roots and are particularly required during the development of new leaves early in the season.
文摘Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, “CATAS7-20-59”, “PR107”, “RRIM600”, “GT1”, “INA873”, “93-114”in South China. The results showed that there were six kinds of existing plant types of rubber tree after planting of rubber plantations, which were available tapping trees, wind damaged trees, cold damaged trees, tapping panel dryness trees, absent trees and weak trees, respectively. These data investigated also showed rubber trees under available tapping, stoppage due to tapping panel dryness, absence, wind damage, cold damage and weakness were counted and calculated and made up for 72.21%, 14.75%, 5.61%, 3.86%, 2.68% and 1.89%. Tapping panel dryness trees, wind damage and absent trees are major factors for the loss of tapping rubber trees in the rubber plantations. Of these investigated varieties, available tapping trees per 100 trees of rubber plantation of “PR107”at the 1st, 12th, 14th, 16th, 20th, 24th tapping year were 96, 67, 70, 75, 66, 46 trees in Hainan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “RRIM600”at the 9th, 15th, 20th, 22nd tapping year were 88, 62, 55, 36 trees in Yunnan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “93-114” at the 10th, 19th, tapping year were 94, 62 trees in Guangdong planting zone. These results showed that available tapping trees of rubber plantation decreased with increasing tapping age under different planting zones in China.
基金supported by the Hainan Province South China Sea New Star Science and Technology Innovation Talent Platform Project(NHXXRCXM202303)National Natural Science Foundation of China(42207524)+2 种基金Hainan Provincial Natural Science Foundation of China(422QN264 and 423MS117)Key R&D Program of Hainan(ZDYF2022SHFZ042)start-up funding from Hainan University(KYQD(ZR)-22085).
文摘Rubber plantations have increased signifcantly under unprecedented economic growth in tropical areas,which leads to soil degradation and thereby alters soil hydrological processes.However,our understanding of how forest conversion affects soil hydrological processes remains unclear.Here,we collected soil samples from secondary forests(SF)and rubber plantations(RP)to determine the soil hydrological characteristics.We found the topsoil(0-20 cm)water retention in SF was higher than that of RP but displayed the contrast pattern in a deeper soil layer(20-60 cm).Meanwhile,the soil infltration rates among the two vegetation types decreased signifcantly with infltration time,with higher stable soil infltration rates in SF than those in RP.Moreover,soil properties were also impacted by the forest conversion,such as the topsoil capillary porosity(CP)and total porosity(TP)in SF were higher than those of RP but contrasted in a deep soil layer.In comparison,the topsoil bulk density(BD)in SF was lower than that of RP,but contrasted in the deep soil layer and reached a signifcant level in the 0-10 and 40-50 cm(P<0.05).Overall,the soil water retention was mainly determined by the CP,which could explain 31.56%of the total variance in soil water retention,followed by TP(26.57%)and soil BD(26.47%),whereas soil texture exerts a weak effect on soil water retention.Therefore,we can conclude that the conversion of tropical rainforest into rubber plantations may accelerate soil erosion owing to its lower topsoil water retention and soil infltration rates.
文摘Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.