期刊文献+
共找到1,785篇文章
< 1 2 90 >
每页显示 20 50 100
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:2
1
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Synergistically Improved Mechanical Properties and Thermal Conductivity of Hypoeutectic AlSiNiFeMg Alloy Prepared by Ultrasonic-assisted Casting
2
作者 ZHANG Wenda YUAN Xuan +4 位作者 ZHOU Yuli ZHONG Gu BAI Peikang WANG Hongfu LIU Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1565-1568,共4页
We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and... We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively. 展开更多
关键词 Al-Si alloy mechanical property thermal conductivity ultrasonic treatment SOLIDIFICATION microstructure
下载PDF
Simultaneously improving thermal conductivity,mechanical properties and metal fluidity through Cu alloying in Mg-Zn-based alloys
3
作者 Yuntao Zhang Wei Liu +3 位作者 Weipeng Chen Zhiqiang Li Hua Hou Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3823-3839,共17页
Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal con... Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal conductivity.Here,we investigate microstructure,mechanical performance,thermal conductivity and metal fluidity of Mg-5Zn(wt.%)alloy after Cu alloying by experimental and simulation methods.First,Mg-5Zn alloy consist ofα-Mg matrix and interdendritic MgZn phases.As the Cu content increases,however,MgZn phases disappear but intragranular Mg_(2)Cu and interdendritic MgZnCu phases appear in Mg-5Zn-Cu alloys.Besides,the grain size ofα-Mg phase is refined and the volume fraction of MgZnCu phase increases as the Cu content increases.Second,Cu addition is found to improve thermal conductivity of Mg-5Zn alloy remarkably.Especially,Mg-5Zn-4Cu alloy exhibits the best thermal conductivity of 124 W/(m·K),which is mainly due to the significant reduction in both solid solubility of Zn in theα-Mg matrix and lattice distortion ofα-Mg matrix.Moreover,a stable crystal structure of MgZnCu phase also contributes to an increased thermal conductivity based on first principles and molecular dynamics simulations.Third,Cu addition simultaneously enhances strength and ductility of Mg-5Zn alloy.Tensile yield strength and elongation of Mg-5Zn-6Cu alloy reach 117 MPa and 18.0%,respectively,which is a combined result of refinement,solution,second phase,and dislocation strengthening.Finally,combined with a phase field simulation,we found that Cu addition enhances metal fluidity of Mg-5Zn alloy.On the one hand,Cu alloying not only delays dendrite growth but also prolongs solidification time.On the other hand,MgZnCu phase stabilizes the dendrite growth of theα-Mg phases by reducing energy consumption during solidification of liquid metal.This work demonstrates that Cu alloying is an ideal strategy for synergistically improving the thermal conductivity,mechanical performance and metal fluidity of Mg-based alloys. 展开更多
关键词 Mg-Zn-Cu alloy Phase field Molecular dynamics Thermal conductivity Metal fluidity
下载PDF
Recent advancements in thermal conductivity of magnesium alloys
4
作者 Hao Lv Jun Tan +7 位作者 Qian Yuan Fanglei Wang Yunxuan Zhou Quan Dong Aitao Tang Jürgen Eckert Bin Jiang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1687-1708,共22页
As highly integrated circuits continue to advance,accompanied by a growing demand for energy efficiency and weight reduction,materials are confronted with mounting challenges pertaining to thermal conductivity and lig... As highly integrated circuits continue to advance,accompanied by a growing demand for energy efficiency and weight reduction,materials are confronted with mounting challenges pertaining to thermal conductivity and lightweight properties.By virtue of numerous intrinsic mechanisms,as a result,the thermal conductivity and mechanical properties of the Mg alloys are often inversely related,which becomes a bottleneck limiting the application of Mg alloys.Based on several effective modification methods to improve the thermal conductivity of Mg alloys,this paper describes the law of how they affect the mechanical properties,and clearly indicates that peak aging treatment is one of the best ways to simultaneously enhance an alloy's thermal conductivity and mechanical properties.As the most frequently used Mg alloy,cast alloys exhibit substantial potential for achieving high thermal conductivity.Moreover,recent reports indicate that hot deformation can significantly improve the mechanical properties while maintaining,and potentially slightly enhancing,the alloy's thermal conductivity.This presents a meaningful way to develop Mg alloys for applications in the field of small-volume heat dissipation components that require high strength.This comprehensive review begins by outlining standard testing and prediction methods,followed by the theoretical models used to predict thermal conductivity,and then explores the primary influencing factors affecting thermal conductivity.The review summarizes the current development status of Mg alloys,focusing on the quest for alloys that offer both high thermal conductivity and high strength.It concludes by providing insights into forthcoming prospects and challenges within this field. 展开更多
关键词 Mg alloy Thermal conductivity Mechanical properties Solute atom Second phase
下载PDF
In situ formation of lithiophilic Li_(22)Sn_(5) alloy and high Li-ion conductive Li_(2)S/Li_(2)Se via metal chalcogenide SnSSe for dendrite-free Li metal anodes 被引量:1
5
作者 Yaya Wang Yang Guo +9 位作者 Jiang Zhong Meng Wang Lei Wang Shengyang Li Song Chen Hongli Deng Yong Liu Yidi Wu Jian Zhu Bingan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期339-347,I0008,共10页
Lithium metal has gained extensive attention as the most ideal candidate for next-generation battery anode owing to the ultrahigh specific capacity and the lowest electrochemical potential.However,uncontrollable dendr... Lithium metal has gained extensive attention as the most ideal candidate for next-generation battery anode owing to the ultrahigh specific capacity and the lowest electrochemical potential.However,uncontrollable dendrite growth and huge volume variation extremely restrict the future deployment of lithium metal batteries.Herein,we report metal chalcogenide SnSSe with unique nanoplate stacking structure as a robust substrate for stable Li metal anode.During the initial Li plating process,lithiophilic Li_(22)Sn_(5) alloy and Li_(2)S/Li_(2)Se sites are obtained via in-situ electrochemical reaction of Li metal and SnSSe.Density functional theory(DFT)calculation demonstrates that the formed Li_(2)S/Li_(2)Se achieves low Li diffusion energy barrier,ensuring rapid Li~+migration.Li_(22)Sn_(5) alloy provides strong nucleation sites,promoting uniform Li nucleation.Furthermore,in-situ optical microscopy analysis suggests that the synthesized effect fundamentally inhibits lithium dendrite growth.Consequently,SnSSe modified Cu foil delivered an ultralow nucleation overpotential,superior cycling stability with 450 cycles(Coulombic efficiency,>98%),and excellent plating/stripping behavior over 2200 h at 0.5 mA cm^(-2).Moreover,the brilliant reversible cycles and rate capability were also realized in Li@SnSSe//LiFePO_(4)(LFP)full cell,shedding light on the feasibility of SnSSe for stable and dendrite-free lithium metal anode. 展开更多
关键词 Lithiophilic Li_(22)Sn_(5)alloy High Li-ion conductive Li_(2)S/Li_(2)Se Low nucleation barrier High Coulombic efficiency Dendrite-free Li
下载PDF
Conduction Properties of highly Conductive a-Si∶H∶Y Alloy Films at Low Temperature
6
作者 张德恒 王家俭 +2 位作者 刘汝军 高汝伟 王矜奉 《Journal of Rare Earths》 SCIE EI CAS CSCD 1997年第2期50-54,共5页
Conductive n type a Si∶H∶Y alloy films with the conductivity as high as 60 S/cm have been deposited on Si substrate by radio frequency sputtering. In the temperature range 20~300 K, for samples with large Y conte... Conductive n type a Si∶H∶Y alloy films with the conductivity as high as 60 S/cm have been deposited on Si substrate by radio frequency sputtering. In the temperature range 20~300 K, for samples with large Y contents, the thermally activated conduction is also observed and the plots of lg σ vs. 1/ T can be fitted by two linear functions with different slopes. The corresponding temperatures of the kinks between the two straight lines depend on the Y contents in the samples. For small Y content films, the conductivities can be fitted to the funciton σ∝ exp (-1/ T 1/4 ). The present results are interpreted using different conduction mechanisms in different temperature ranges for samples with different Y contents. 展开更多
关键词 Rare earths a Si∶H∶Y alloy conductIVITY Variable temperature conduction
下载PDF
Mechanical properties,electrical conductivity and microstructure of CuCrZr alloys treated with thermal stretch process 被引量:3
7
作者 张蓓 张治国 李卫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2285-2292,共8页
CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hard... CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect. 展开更多
关键词 CuCrZr alloys thermal stretch treatment MICROHARDNESS electrical conductivity
下载PDF
Application of Lanthanum in High Strength and High Conductivity Copper Alloys 被引量:24
8
作者 周世杰 赵秉钧 +1 位作者 赵桢 金鑫 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期385-388,共4页
China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed... China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed the non-argent Lanthanum-tellurium-copper alloy as a substitute for industry argent-copper. In our research, we were able to successfully apply rare earth lanthanum to copper alloy. The defects as porosity, inclusion, etc. originating from nonvacuum melting processing were controlled. Fine grain was obtained. Meanwhile, the comprehensive properties of the copper alloy, such as strength, conductivity and thermal conductivity were improved. The research results in increasing conductivity and thermal conductivity by 5% and 15%, respectively, while the tensile strength is increased by 6% higher than Ag-Cu alloy. The anti-electric corrosion property is good, and there is no argent-cadmium steam population originating from the electric arc effect. The addition of lanthanum further reduces the content of oxygen and hydrogen. The optimum quantity of the addition of RE lanthanum in the copper alloy is 0.010% - 0.020% . 展开更多
关键词 LANTHANUM copper alloy high strength high conductivity rare earths
下载PDF
Study on improvement of conductivity of Cu-Cr-Zr alloys 被引量:12
9
作者 LI Huaqing XIE Shuisheng WU Pengyue MI Xujun 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期124-130,共7页
The influence of alloying, heat treatment, and plastic working on the performance of Cu-Cr-Zr alloys was investigated. The precipitated phases were characterized as Cr, Cu51Zr14 and Cu5Zr. Cu-Cr-Zr alloys demonstrate ... The influence of alloying, heat treatment, and plastic working on the performance of Cu-Cr-Zr alloys was investigated. The precipitated phases were characterized as Cr, Cu51Zr14 and Cu5Zr. Cu-Cr-Zr alloys demonstrate combination properties of high strength and high conductivity after solution treatment, aging treatment, and plastic deformation. Precipitation course of Cr is the main factor that influences the conductivity of Cu-Cr-Zr alloys, while adding Zr in the alloys adjusts the orientation relationship between Cr and matrix, and tends to increase the conductivity of aged Cu-Cr-Zr alloys after deformation. 展开更多
关键词 Cu-Cr-Zr alloys electrical conductivity alloyING heat treatment plastic deformation
下载PDF
Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique 被引量:10
10
作者 Hui Chen Cheng-chang Jia +2 位作者 Shang-jie Li Xian Jia Xia Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期364-371,共8页
Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding ... Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification. 展开更多
关键词 metallic matrix composites diamonds copper alloys interfacial bonding thermal conductivity
下载PDF
Effect of rare earth and alloying elements on the thermal conductivity of austenitic medium manganese steel 被引量:6
11
作者 Shao-chun Chen Hong-xiang Ye Xin-qiang Lin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第6期670-674,共5页
The influence of different contents of Cr, Mo, and rare earth element(RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr ... The influence of different contents of Cr, Mo, and rare earth element(RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr in medium manganese steel can improved the ordering of C–Mn atomic clusters, so as to improve the steel's thermal conductivity. However, Cr will lead to precipitation of a great deal of carbides in medium manganese steel when its content is greater than 4wt%. These carbides would aggregate around the grain boundary, and as a result, the thermal conductivity is decreased. By the addition of Mo whose content is about 2wt%, spherical carbides will be formed, thus improving the thermal conductivity of the medium manganese steel. The interaction between rare earth elements and alloying elements will raise both the thermal conductivity and the wear-resisting property of medium manganese steel. 展开更多
关键词 medium MANGANESE steel alloyING elements RARE earth thermal conductivity
下载PDF
Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging 被引量:15
12
作者 雷前 李周 +3 位作者 潘志勇 汪明朴 肖柱 陈畅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1006-1011,共6页
The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electri... The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electric conductivity during aging were established for Cu-Ni-Si alloys,on the basis of linear relationship between the electric conductivity and the volume fraction of precipitates,and the calculation results coincide well with the experiment ones.The transformation kinetics curves were established to characterize the aging process.The characteristics of precipitates in the supersaturated solid solution alloy aged at 723 K were established,and the results show that the precipitates areβ-Ni3Si andδ-Ni2Si phases. 展开更多
关键词 CU Cu-Ni-Si alloy DYNAMICS phase transformation PRECIPITATION electrical conductivity
下载PDF
A review on thermal conductivity of magnesium and its alloys 被引量:27
13
作者 Shubo Li Xinyu Yang +1 位作者 Jiangtao Hou Wenbo Du 《Journal of Magnesium and Alloys》 SCIE 2020年第1期78-90,共13页
This review summarizes recent researching works the thermal conductivity of Mg–Zn,Mg–Al,Mg–Mn and Mg–RE alloys.Solute atoms,heat treatment,deformation and temperature,which have significant influence on the therma... This review summarizes recent researching works the thermal conductivity of Mg–Zn,Mg–Al,Mg–Mn and Mg–RE alloys.Solute atoms,heat treatment,deformation and temperature,which have significant influence on the thermal conductivity of magnesium alloys,are highlighted.For an individual solute atom,its effects on thermal conductivity are highly dependent on its chemical valence,radius and extra-nuclear electrons.The thermal conductivity of Mg alloys is decreased by solution treatment,but improved by aging and/or annealing treatments.As for the deformed Mg alloys,the thermal conductivity along transverse or normal direction is superior to that of along extrusion or rolling direction.We expect this review is helpful for those who are working on developing Mg alloys with superior thermal conductivity.©2020 Published by Elsevier B.V.on behalf of Chongqing University. 展开更多
关键词 Magnesium alloys Thermal conductivity MICROSTRUCTURE Influencing factors
下载PDF
Influence of pre-stretching on quench sensitive effect of high-strength Al-Zn-Mg-Cu-Zr alloy sheet 被引量:9
14
作者 HE Ke-zhun LI Qun +2 位作者 LIU Sheng-dan ZHANG Xin-ming ZHOU Ke-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2660-2669,共10页
The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and different... The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC. 展开更多
关键词 high-strength aluminum alloy PRE-STRETCHING tensile properties quench sensitive effect strengthening precipitates
下载PDF
Electrical conductivity optimization of the Na3AlF6–Al2O3–Sm2O3 molten salts system for Al–Sm intermediate binary alloy production 被引量:5
15
作者 Chun-fa Liao Yun-fen Jiao +3 位作者 Xu Wang Bo-qing Cai Qiang-chao Sun Hao Tang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1034-1042,共9页
Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective ... Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant(CVCC) technique was used to measure the conductivity for the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3electrolysis medium in the temperature range from 905 to 1055°C. The temperature(t) and the addition of Al2O3(W(Al2O3)), Sm2O3(W(Sm2O3)), and a combination of Al2O3and Sm2O3into the basic fluoride system were examined with respect to their effects on the conductivity(κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t) and decreases with the addition of Al2O3or Sm2O3or both. We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3):W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption. 展开更多
关键词 aluminium oxide samarium oxide molten salt electrical conductivity regression analysis Al–Sm intermediate alloy
下载PDF
Determination of thermal conductivity of magnesium-alloys 被引量:9
16
作者 ZHOU Jie min 1,YANG Ying 1,Magne Lamvik 2,WANG Gang 1 (1.Department of Applied Physics and Heat Engineering, Central South University, Changsha 410083, China 2.Norwegian University of Science and Technology) 《Journal of Central South University of Technology》 2001年第1期60-63,共4页
An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which t... An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which the thermal diffusivity can be measured directly. Then thermal conductivity can be obtained with relation to thermal diffusivity. Compared with the recommended data from the literature the fitted values of the thermal diffiusivity correspond with 3%, and the credible probability of the thermal conductivity in the range of 0 450 ℃ is about 95%. The method is applicable in the given temperature range. 展开更多
关键词 angstroms method thermal conductivity thermal diffusivity magnesium alloy
下载PDF
α″phase-assisted nucleation to obtain ultrafineαprecipitates for designing high-strength near-βtitanium alloys 被引量:5
17
作者 Zhen-yu WANG Li-bin LIU +3 位作者 Di WU Li-gang ZHANG Wan-lin WANG Ke-chao ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2681-2696,共16页
The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can ... The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can obtain an ultrafineαphase by using the α″phase assisted nucleation.The bimodal microstructure obtained with the heat-treatment process can confer the alloy with a good balance between the strength and plasticity.The deformation mechanism is the dislocation slip and the{1101}twinning in the primary α phase.The strengthening mechanism is α/β interface strengthening.The interface of(0001)α/(110)β has a platform−step structure,whereas(1120)α/(111)βinterface is flat with no steps. 展开更多
关键词 alloy design high-strength titanium alloy α″phase α/βinterface twin deformation
下载PDF
Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production 被引量:3
18
作者 Shu-mei Chen Chun-fa Liao +3 位作者 Jue-yuan Lin Bo-qing Cai Xu Wang Yun-fen Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第6期701-709,共9页
Dy–Cu intermediate alloys have shown substantial potential in the field of magnetostrictive and magnetic refrigerant materials.Therefore,this study focused on investigating the electrical conductivity of molten-salt ... Dy–Cu intermediate alloys have shown substantial potential in the field of magnetostrictive and magnetic refrigerant materials.Therefore,this study focused on investigating the electrical conductivity of molten-salt systems for the preparation of Dy–Cu alloys and on optimizing the corresponding operating parameters.The electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O systems was measured from 910 to 1030°C using the continuously varying cell constant method.The dependencies of the LiF–DyF3–Dy2O3–Cu2O system conductivity on the melt composition and temperature were examined herein.The optimal operating conditions for Dy–Cu alloy production were determined via analyses of the electrical conductivity and activation energies for conductance,which were calculated using the Arrhenius equation.The conductivity of the molten system regularly increases with increasing temperature and decreases with increasing concentration of Dy2O3 or Cu2O or both.The activation energy Eκof the LiF–DyF3–Dy2O3 and LiF–DyF3–Cu2O molten-salt systems increases with increasing Dy2O3 or Cu2O content.The regression functions of conductance as a function of temperature(t)and the addition of Dy2O3(W(Dy2O3))and Cu2O(W(Cu2O))can be expressed asκ=-2.08435+0.0068t-0.18929W(Dy2O3)-0.07918W(Cu2O).The optimal electrolysis conditions for preparing the Dy–Cu alloy in LiF–DyF3–Dy2O3–Cu2O molten salt are determined to be 2.0wt%≤W(Dy2O3)+W(Cu2O)≤3.0wt%and W(Dy2O3):W(Cu2O)=1:2 at 970 to 1000°C. 展开更多
关键词 electrical conductivity MOLTEN salt Dy–Cu alloy DYSPROSIUM OXIDE cuprous OXIDE
下载PDF
Development of Mg-Zn-Y-Zr casting magnesium alloy with high thermal conductivity 被引量:8
19
作者 V.E.Bazhenov A.V.Koltygin +7 位作者 M.C.Sung S.H.Park Yu.V.Tselovalnik A.A.Stepashkin A.A.Rizhsky M.V.Belov V.D.Belov K.V.Malyutin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1583-1593,共11页
Magnesium alloys are used in aircraft because of their light weight.However,for these alloys to be applied in electronic devices,high thermal conductivities are required.Several high-potential compositions of Mg-Zn-Y-... Magnesium alloys are used in aircraft because of their light weight.However,for these alloys to be applied in electronic devices,high thermal conductivities are required.Several high-potential compositions of Mg-Zn-Y-Zr alloys were selected by phase composition and their freezing ranges calculated using Thermo-Calc software.The alloys were prepared,and their fluidity,hot tearing susceptibility,mechanical properties,and thermal conductivity were obtained and compared.The alloy composed of Mg-4 wt%Zn-3 wt%Y-0.3 wt%Zr was selected for further investigation,because of its high thermal conductivity and satisfactory mechanical properties.The Mg-4 wt%Zn-3 wt%Y-0.3 wt%Zr alloy’s fluidity and hot tearing susceptibility were similar to those of the widespread AZ91 commercial casting magnesium alloy.The influence of a heat treatment regime on the microstructure,thermal conductivity,and mechanical properties of the developed alloy was also investigated.It was established that the room temperature thermal conductivity of the Mg-4 wt%Zn-3 wt%Y-0.3 wt%Zr alloy after aging at 300℃for 5 h was 105 W/m K^(-1).Additionally,the following tensile test results were obtained in aged condition:120 MPa yield strength,200 MPa ultimate tensile strength,and 4%elongation.The utilization of solid solution heat treatment at 520℃for 8 h prior to aging can promote up to 9%increase in elongation.The Mg-4 wt%Zn-3 wt%Y-0.3 wt%Zr casting alloy can be used as a high thermal conductivity material with industrial applications. 展开更多
关键词 Magnesium alloy Mg-Zn-Y-Zr Thermal conductivity Phase composition FLUIDITY Hot tearing susceptibility
下载PDF
Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al−Si alloys 被引量:18
20
作者 Jun-qi GAN Yu-jian HUANG +1 位作者 Cheng WEN Jun DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2879-2890,共12页
Trace amount of Sr(0.05 wt.%)was added into the hypoeutectic Al−Si(3−12 wt.%Si)alloys to modify their microstructure and improve thermal conductivity.The results showed that the thermal conductivity of hypoeutectic Al... Trace amount of Sr(0.05 wt.%)was added into the hypoeutectic Al−Si(3−12 wt.%Si)alloys to modify their microstructure and improve thermal conductivity.The results showed that the thermal conductivity of hypoeutectic Al−Si alloys was improved by Sr modification,and the increment and increasing rate of the thermal conductivity gradually increased with Si content increasing.The improvement of thermal conductivity was primarily related to the morphology variation of eutectic Si phases.In Sr-modified Al−Si alloys,the morphology of eutectic Si phases was a mixed morphology of fiber structure and fine flaky structure,and the proportion of the fine flaky eutectic Si phases gradually decreased with Si content increasing.Under the Si content reaching 9 wt.%,the proportion of fine flaky eutectic Si phases was nearly negligible in Sr-modified alloys.Correspondingly,the increment and increasing rate of thermal conductivity of Sr-modified alloys reached the maximum and tended to be stable. 展开更多
关键词 hypoeutectic Al−Si alloy Sr modification eutectic Si morphology thermal conductivity Al/Si interface
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部