Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-...Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-controlled electric furnace.The results show that the optimal sintering system is the sintering temperature range of 1250 ℃ to 1280 ℃ and retaining time of 5 min-10 min.The bulk density,the apparent density and 24 h water absorption of ceramsites decrease with the increase of sintering additive and the decrease of the amount of fly ash.The addition of fluxing additive can significantly enhance the compressive strength of ceramsite pellets,reduce its water absorption at 24 h and improve pore-shape ofinner structure.The firing coefficient (Pk) changed within 7.8-8.1 of raw materials can prepare high strength and low water absorption ceramsites.Pk kept a good linear relationship with porosity and strength of ceramsite particles.展开更多
Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials...Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials for wastewater treatment.Through SEM,XRD analysis,and heavy metal leaching analysis,it was found that porous ceramsite were porous materials with rough surfaces.After calcination,the newly formed mineral was silicate calcium feldspar.The heavy metal concentration in the leaching solution of porous ceramsite met the national surface water quality requirements.The treatment of domestic sewage showed that the volumetric loads of COD Cr,NH_(4)^(+)-N,and TN removed by the aerated biofilter were 5.23,0.98,and 0.35 kg/(m^(3)·d),respectively,with removal rates of 85.46%,96.13%,and 32.31%.展开更多
The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential ...The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential thermogravimetr,differential scanning calorimetry-Fourier transform infrared,and mercury intrusion porosimetry,respectively.The experimental results show that the ceramsite undergoes two weightless stages in the calcining process.With the increase in the calcining temperature,a large number of pores are formed inside the ceramsite,its structure becomes denser,but the calcining temperature band of the ceramsite becomes narrow.The crystalline phase of the ceramsite changes at different calcining temperatures and the mineral phase changes from the earlieralbite,quartz,oligoclase,hematite,etc,to a silica-aluminum-rich glass phase.The 1130℃ is a more suitable calcining temperature,and the cylinder compressive strength of ceramics is 11.59 MPa,the packing density,apparent density,porosity,and water absorption are 939.11 kg/m^(3),1643.75 kg/m^(3),28.11%,and 10.35%,respectively,which can meet the standards for high-strength lightweight aggregates.展开更多
This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the en...This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the environment.The SF,J-ring,visual stability index,and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates.The experiment results indicate that CSLSCC with the 20%volume percentage of steel slag(VPS)performs better workability,higher strength,and higher specific strength.The 7-day compressive strength of CSLSCC with the 0.4 of the water-binder ratio(W/B),decreases with the increase of steel slag content,while the 28-day compressive strength increases significantly.The ceramsite self-compacting concrete with good comprehensive performance can be obtained when the substitution rate of steel slag sand for fine aggregate is less than 20%(volume percentage).展开更多
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging...Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components.展开更多
The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this s...The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment.展开更多
Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica...Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica micropowder,α-Al_(2)O_(3) micropowder,zirconia and zircon micropowder as fines,and Secar 71 cement(calcium aluminate cement)as the binder.The effects of the coal gangue ceramsites addition(0,6%,12%,18%and 24%,by mass)on the properties of the as-prepared lightweight alumina-silica castables were investigated.The results show that:(1)the addition of coal gangue ceramsites can reduce the sintering shrinkage of the specimens and help to improve the strength and thermal shock resistance;(2)the samples with the addition of coal gangue ceramsites can produce pores in the matrix of the sintered samples,which provides enough space for the growth of CA6 complex solid solution and expands the irregular lamellar structure;(3)with the addition of coal gangue ceramsites increasing,the linear shrinkage of the samples heat treated at 1000 or 1200℃firstly reduces and then increases,the bulk density increases and the apparent porosity decreases;the cold compression strength and the thermal shock resistance of the specimens heat treated at 1200℃firstly increase and then decrease.Thus,the optimal addition of coal gangue ceramsites is 18%.展开更多
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc...High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel.展开更多
The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,...The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,based on the potential crystallization principle of calcium sulfate in NH_(4)NO_(3)-H_(3)PO_(4)-H_(2)O,the deep decalcification(i.e.calcium removal)technology to achieveα-high-strength gypsum originated from freezing acidolysis-solutions has been firstly proposed and investigated.Typically,calcium can be removed from the factory-provided freezing acidolysis-solution by neutralizing it with ammonia,followed by the addition of ammonium sulfate solution.As a result,the formation of calcium sulfate in the reaction system undergoes the nucleation and growth of CaSO_(4)·2H_(2)O(DH),as well as its dissolution and crystallization into short columnarα-CaSO_(4)·0.5H_(2)O(α-HH).Remarkably,with the molar ratio of SO_(4)^(2-)/Ca^(2+)at 1.8,the degree of neutralization(NH_(3)/HNO_(3) molar ratio)at 1.7,the reaction temperature of 94℃,and the reaction time of 300 min,the decalcification rate can reach 86.89%,of which the high-strengthα-CaSO_(4)·0.5H_(2)O(α-HH)will be obtained.Noteworthy,the deep decalcification product meets the standards for the production of fine phosphates and highly water-soluble phosphate fertilizers.Consequently,the 2 h flexural strength ofα-HH is 5.3 MPa and the dry compressive strength is 36.8 MPa,which is up to the standard of commercialα-HH.展开更多
In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture dela...In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects.展开更多
A pilot study was conducted to produce high performance green ceramsite by using sewage sludge, fly ash and silt. According to the theory of Riley, the proportions of raw materials were chosen to perform the sintering...A pilot study was conducted to produce high performance green ceramsite by using sewage sludge, fly ash and silt. According to the theory of Riley, the proportions of raw materials were chosen to perform the sintering experiments. Thereby, the optimum proportion of sludge, fly ash and silt and sintering parameters were determined. The microstructure of the optimized mixture and the leaching of heavy metal elements were also analyzed. The lab testing results show that sintering parameters have significant impact on the performance of ceramsite. For solid waste ceramsite with high loss of ignition, inadequate pre-burning process lowers the strength and increases the water absorption. Low water absorption can be achieved by the enameled surface and closed pore structure. The high performance green ceramsite has the density grade of 700, water absorption of 6% and compressive strength of 6.6 MPa. The ceramsite is mainly composed of cristobalite and mullite. The leaching of heavy metal elements from the solid waste ceramsite are lower than the limits required by the national standard. This study shows that the utilization of solid waste ceramsite as the light Weight aggregate is feasible and safe.展开更多
Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-ba...Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-based composite is proposed by using ceramsite containing iron oxide as EM wave absorbing functional aggregate. The ceramsite was synthesized by adding 10 wt% Fe3O4 into clay and sintering at 1 200 ℃, which shows obvious dielectric and magnetic loss properties for electromagnetic wave. The maximum reflection loss(RL) of the concrete specimens prepared with the ceramsite is between-10.2--10.7 dB(corresponding to absorption greater than 90% EM energy) in the bandwidth of 8-18 GHz. In addition, the compressive strength at 28 days age of the concrete is 46 MPa, showing the potentiality of being used as structural components in buildings.展开更多
Structure characteristics of three kinds of ceramsite with different water absorption and the influence on microstructure of interfacial zone as well as performance of chloride permeabil-ity and frost resistance of co...Structure characteristics of three kinds of ceramsite with different water absorption and the influence on microstructure of interfacial zone as well as performance of chloride permeabil-ity and frost resistance of combined aggregate concrete were investigated. The results show that, dense shell and closed internal pore have sharp effects on lowering water absorption of ceramsite. However, the ceramsite with high water absorption has obvious effect on the densification of interfa-cial paste which would develop a structure with lower porosity, finer aperture and higher microhard-ness. Furthermore, the impermeability and frost-resistance of concrete can be improved due to the ef-fect of water absorption and releasing by ceramsite with higher water absorption.展开更多
In order to realize resource utilization of industrial tungsten residue and treatment of heavy metal wastewater in mining and metallurgical area of south China,a novel ceramsite was prepared with the main raw material...In order to realize resource utilization of industrial tungsten residue and treatment of heavy metal wastewater in mining and metallurgical area of south China,a novel ceramsite was prepared with the main raw materials of diatomite and tungsten residue.The adsorption behavior of copper ions in solution on the ceramsite was investigated.Results indicated that the surface of the newly-developed ceramsite was rough and porous.There were lots of pores across the ceramsite from inner to outside.MnFe2O4 was one of the main components of the ceramsite.The Cu^2+adsorption capacity by the ceramsite reached 9.421 mg/g with copper removal efficiency of 94.21%at 303 K,initial Cu^2+concentration of 100 mg/L and dosage of 0.5 g after 300 min adsorption.With increase of ceramsite dosage,the total adsorption amount of Cu^2+increased,but the adsorption capacity decreased.The adsorption capacity increased with the increase of solution p H.The isothermal adsorption of Cu^2+by the ceramsite fitted the Freundlich model better.The adsorption mainly occurred on a heterogeneous surface,and was a favorable process.The adsorption process closely followed the pseudo-second kinetic equation.In initial stage of wastewater treatment,the adsorption process should be controlled mainly by diffusion,and the removal of Cu^2+can be improved by enhancing agitation.展开更多
Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge b...Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge by high-temperature sintering process,and then it’s physical properties,leaching toxicity and sintering mechanisms were investigated.The results showed that the preferred conditions for the preparation of ACFM were that the mass ratio of sludge,river sediment and fly ash was 5∶4∶1,preheated at 400℃for 20 min and sintered at 1 150℃for 5 min.After the optimal sintering conditions treatment,the physical properties of the rate of breaking and wear,solubility in hydrochloric acid,silt carrying capacity,void fraction and Brunauer-Emmett-Teller(BET)specific surface area of ACFM were 0.2%,0.01%,0.2%,71.1%and 0.75×104cm2/g,respectively.The results confirmed that the ACFM’s physical properties were totally aligned to the requirements of China’s industry standard(CJ/T 299—2008).The leaching toxicity results indicated that the leaching contents of heavy metals,such as Cr,Zn and Cu,were much lower than the thresholds of China’s national standards(GB 5085.3—2007 and GB 8978—1996).展开更多
To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments additi...To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability.展开更多
A low-cost and efficient filter medium for Cd(Ⅱ) removal was prepared by anchoring-SCN functional groups(by 3-thiocyanatopropyltriethoxysilane, TCPS) on ceramsite via the approach of synthesizing a honeycomb calciuma...A low-cost and efficient filter medium for Cd(Ⅱ) removal was prepared by anchoring-SCN functional groups(by 3-thiocyanatopropyltriethoxysilane, TCPS) on ceramsite via the approach of synthesizing a honeycomb calciumaluminum-silicate-hydrate(C-A-S-H) layer as intermediate. The specific surface area of ceramsite was increased enormously by more than 50 times because of the modification of honeycomb layer. Moreover, the abundant Si-OH bonds existing in the structure of CAS-H can serve as active sites for TCPS. The combined effects ensure that the hybrid filter medium(named ceramsite/C-A-S-H/TCPS) demonstrated a high Cd(Ⅱ) adsorption capacity of 18.27 mg·g^-1 for particle size of 0.1-0.6 mm, 12.63 mg·g^-1 for 0.6-1.25 mm and 8.64 mg·g^-1 for 1.25-2.35 mm. The Cd(Ⅱ) adsorption capacity per unit area of ceramsite/C-A-S-H/TCPS(0.1-0.6 mm) is up to 4.07 mg·m^-2, which is much higher than that of many nano-adsorbents. In addition, ceramsite/C-AS-H/TCPS could maintain a high removal efficiency(> 85%) in a wide range of p H 3-11 and showed excellent selectivity in the presence of competing ions. Furthermore, Cd(Ⅱ) could be desorbed from ceramsite/C-A-S-H/TCPS composites with nearly 100%, suggesting the potential application in recycling of heavy metal ions.展开更多
Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a no...Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu^(2+)and Cd^(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu^(2+) and Cd^(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g^(-1) and 3.84 mg·g^(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu^(2+) and Cd^(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.展开更多
The easy acidification and high hydrogen sulfide (H2S) production during anaerobic digestion of macroalgae limited its application in biomethane production. In order to investigate the effects of ceramsite on methan...The easy acidification and high hydrogen sulfide (H2S) production during anaerobic digestion of macroalgae limited its application in biomethane production. In order to investigate the effects of ceramsite on methane and HzS productions during anaerobic digestion of macroalgae, batch experiments ofMacrocystis pyrifera were carried out. Four groups named C0, C1, C2 and C3 added with 0, 1.5, 3.0 and 4.5 g/g substrate of ceramsite, respectively, were studied and compared. The highest cumulative methane yield of 286.3 mL/g substrate is obtained in C2, which is 40.11% higher than that of CO. The cumulative HzS yields of C1, C2 and C3 are 32.67%, 44.66% and 53.21% lower than that of CO, respectively. Results indicate that ceramsite addition permits higher methane yields, shorter lag-phase time and lower HzS yields during anaerobic digestion of Macrocystispyrifera.展开更多
The regeneration of a spent packing is crucial with respect to the development of circular economy and abstemious society.Thus,the effects of regeneration temperature,resistant time,heating rate,and regeneration cycle...The regeneration of a spent packing is crucial with respect to the development of circular economy and abstemious society.Thus,the effects of regeneration temperature,resistant time,heating rate,and regeneration cycle on the breakthrough performance of methylene blue(MB)dye⁃exhausted ceramsite in a two⁃stage fixed⁃bed column were studied in this work.Results illustrate that the ceramsite exhibited excellent potential regeneration properties under the following optimal regeneration conditions:treatment temperature was 600°C,resistant time was 15 min,heating rate was 20℃/min,regeneration cycle was over 9 cycles,and the breakthrough time,saturation time,regeneration efficiency(RE),and regeneration loss rate(RLR)were 540 min,1020 min,64.61%,and 17.73%,respectively.The RE declined by 35.14%in over 1 cycle,while the RLR increased by 3.15 times in over 9 cycles.Besides,Thomas model was suitable to describe the two⁃stage fixed⁃bed column adsorption and thermal regeneration process with R2=0.978.In conclusion,a thorough understanding of the regeneration behavior of the two⁃stage fixed⁃bed column packed with ceramsite provides reference to obtain an effective and feasible regeneration approach,and it is beneficial for further application in water treatment.展开更多
文摘Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-controlled electric furnace.The results show that the optimal sintering system is the sintering temperature range of 1250 ℃ to 1280 ℃ and retaining time of 5 min-10 min.The bulk density,the apparent density and 24 h water absorption of ceramsites decrease with the increase of sintering additive and the decrease of the amount of fly ash.The addition of fluxing additive can significantly enhance the compressive strength of ceramsite pellets,reduce its water absorption at 24 h and improve pore-shape ofinner structure.The firing coefficient (Pk) changed within 7.8-8.1 of raw materials can prepare high strength and low water absorption ceramsites.Pk kept a good linear relationship with porosity and strength of ceramsite particles.
文摘Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials for wastewater treatment.Through SEM,XRD analysis,and heavy metal leaching analysis,it was found that porous ceramsite were porous materials with rough surfaces.After calcination,the newly formed mineral was silicate calcium feldspar.The heavy metal concentration in the leaching solution of porous ceramsite met the national surface water quality requirements.The treatment of domestic sewage showed that the volumetric loads of COD Cr,NH_(4)^(+)-N,and TN removed by the aerated biofilter were 5.23,0.98,and 0.35 kg/(m^(3)·d),respectively,with removal rates of 85.46%,96.13%,and 32.31%.
基金Funded by the National Natural Science Foundation of China (Z20180222)the Independent Research and Development project of State Key Laboratory of Green Building in Western China (LSZZ202021)+1 种基金the Natural Science Foundation of Shaanxi Provincial Department of Education (20JY041)the Qingyuan Science and Technology Plan Project (No.2020KJJH040)。
文摘The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential thermogravimetr,differential scanning calorimetry-Fourier transform infrared,and mercury intrusion porosimetry,respectively.The experimental results show that the ceramsite undergoes two weightless stages in the calcining process.With the increase in the calcining temperature,a large number of pores are formed inside the ceramsite,its structure becomes denser,but the calcining temperature band of the ceramsite becomes narrow.The crystalline phase of the ceramsite changes at different calcining temperatures and the mineral phase changes from the earlieralbite,quartz,oligoclase,hematite,etc,to a silica-aluminum-rich glass phase.The 1130℃ is a more suitable calcining temperature,and the cylinder compressive strength of ceramics is 11.59 MPa,the packing density,apparent density,porosity,and water absorption are 939.11 kg/m^(3),1643.75 kg/m^(3),28.11%,and 10.35%,respectively,which can meet the standards for high-strength lightweight aggregates.
基金supported by the National Key Research and Development Program of China(No.2021YFB3802005)the National Natural Science Foundation of China(Grant No.51978002)+1 种基金the Natural Science Foundation for the Higher Education Institutions in Anhui Province of China(Grant No.KJ2020A0845)the Housing and Urban-Rural Construction Science and Technology Plan in Anhui Province of China(Grant No.2021-YF69).
文摘This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the environment.The SF,J-ring,visual stability index,and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates.The experiment results indicate that CSLSCC with the 20%volume percentage of steel slag(VPS)performs better workability,higher strength,and higher specific strength.The 7-day compressive strength of CSLSCC with the 0.4 of the water-binder ratio(W/B),decreases with the increase of steel slag content,while the 28-day compressive strength increases significantly.The ceramsite self-compacting concrete with good comprehensive performance can be obtained when the substitution rate of steel slag sand for fine aggregate is less than 20%(volume percentage).
基金National Natural Science Foundation of China(No.52305373)Jiangxi Provincial Natural Science Foundation(No.20232BAB214053)+2 种基金Science and Technology Major Project of Jiangxi,China(No.20194ABC28001)Fund of Jiangxi Key Laboratory of Forming and Joining Technology for Aerospace Components,Nanchang Hangkong University(No.EL202303299)PhD Starting Foundation of Nanchang Hangkong University(No,EA202303235).
文摘Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components.
基金supported by the Natural Science Foundation of China under Grant(No.52172099)the Provincial Joint Fund of Shaanxi(2021JLM-28).
文摘The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment.
文摘Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica micropowder,α-Al_(2)O_(3) micropowder,zirconia and zircon micropowder as fines,and Secar 71 cement(calcium aluminate cement)as the binder.The effects of the coal gangue ceramsites addition(0,6%,12%,18%and 24%,by mass)on the properties of the as-prepared lightweight alumina-silica castables were investigated.The results show that:(1)the addition of coal gangue ceramsites can reduce the sintering shrinkage of the specimens and help to improve the strength and thermal shock resistance;(2)the samples with the addition of coal gangue ceramsites can produce pores in the matrix of the sintered samples,which provides enough space for the growth of CA6 complex solid solution and expands the irregular lamellar structure;(3)with the addition of coal gangue ceramsites increasing,the linear shrinkage of the samples heat treated at 1000 or 1200℃firstly reduces and then increases,the bulk density increases and the apparent porosity decreases;the cold compression strength and the thermal shock resistance of the specimens heat treated at 1200℃firstly increase and then decrease.Thus,the optimal addition of coal gangue ceramsites is 18%.
基金supported by the National Key Research and Development Project of China(Nos.2022YFB3708200 and 2021YFB3703500)the National Natural Science Foundation of China(Nos.52271089 and 52001023).
文摘High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel.
基金supported by the National Key Research and Development Program of China(2018YFC1900206-2)Science&Technology Plan Projects of Guizhou Province(Qiankehe Service Enterprises[2018]4011)Science and Technology Support Plan Project of Guizhou Provincial:Qiankehe Support[2021]General 487。
文摘The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,based on the potential crystallization principle of calcium sulfate in NH_(4)NO_(3)-H_(3)PO_(4)-H_(2)O,the deep decalcification(i.e.calcium removal)technology to achieveα-high-strength gypsum originated from freezing acidolysis-solutions has been firstly proposed and investigated.Typically,calcium can be removed from the factory-provided freezing acidolysis-solution by neutralizing it with ammonia,followed by the addition of ammonium sulfate solution.As a result,the formation of calcium sulfate in the reaction system undergoes the nucleation and growth of CaSO_(4)·2H_(2)O(DH),as well as its dissolution and crystallization into short columnarα-CaSO_(4)·0.5H_(2)O(α-HH).Remarkably,with the molar ratio of SO_(4)^(2-)/Ca^(2+)at 1.8,the degree of neutralization(NH_(3)/HNO_(3) molar ratio)at 1.7,the reaction temperature of 94℃,and the reaction time of 300 min,the decalcification rate can reach 86.89%,of which the high-strengthα-CaSO_(4)·0.5H_(2)O(α-HH)will be obtained.Noteworthy,the deep decalcification product meets the standards for the production of fine phosphates and highly water-soluble phosphate fertilizers.Consequently,the 2 h flexural strength ofα-HH is 5.3 MPa and the dry compressive strength is 36.8 MPa,which is up to the standard of commercialα-HH.
文摘In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects.
基金the National Natural Science Foundation of China (No.51078189)the K.C.Wong Magna Fund in Ningbo University and Zhejiang Province Energy Conservation Innovative Team Project in Building (No.2009R50022)
文摘A pilot study was conducted to produce high performance green ceramsite by using sewage sludge, fly ash and silt. According to the theory of Riley, the proportions of raw materials were chosen to perform the sintering experiments. Thereby, the optimum proportion of sludge, fly ash and silt and sintering parameters were determined. The microstructure of the optimized mixture and the leaching of heavy metal elements were also analyzed. The lab testing results show that sintering parameters have significant impact on the performance of ceramsite. For solid waste ceramsite with high loss of ignition, inadequate pre-burning process lowers the strength and increases the water absorption. Low water absorption can be achieved by the enameled surface and closed pore structure. The high performance green ceramsite has the density grade of 700, water absorption of 6% and compressive strength of 6.6 MPa. The ceramsite is mainly composed of cristobalite and mullite. The leaching of heavy metal elements from the solid waste ceramsite are lower than the limits required by the national standard. This study shows that the utilization of solid waste ceramsite as the light Weight aggregate is feasible and safe.
基金Funded by the National Natural Science Foundation of China(Nos.51372183,50902106,51461135005)Program for New Century Excellent Talents in University(No.NCET-10-0660)
文摘Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-based composite is proposed by using ceramsite containing iron oxide as EM wave absorbing functional aggregate. The ceramsite was synthesized by adding 10 wt% Fe3O4 into clay and sintering at 1 200 ℃, which shows obvious dielectric and magnetic loss properties for electromagnetic wave. The maximum reflection loss(RL) of the concrete specimens prepared with the ceramsite is between-10.2--10.7 dB(corresponding to absorption greater than 90% EM energy) in the bandwidth of 8-18 GHz. In addition, the compressive strength at 28 days age of the concrete is 46 MPa, showing the potentiality of being used as structural components in buildings.
基金Funded by the Western Transportation Construction of Communication Ministry (No. 200331882008)
文摘Structure characteristics of three kinds of ceramsite with different water absorption and the influence on microstructure of interfacial zone as well as performance of chloride permeabil-ity and frost resistance of combined aggregate concrete were investigated. The results show that, dense shell and closed internal pore have sharp effects on lowering water absorption of ceramsite. However, the ceramsite with high water absorption has obvious effect on the densification of interfa-cial paste which would develop a structure with lower porosity, finer aperture and higher microhard-ness. Furthermore, the impermeability and frost-resistance of concrete can be improved due to the ef-fect of water absorption and releasing by ceramsite with higher water absorption.
基金Project(51674305)supported by the National Natural Science Foundation of ChinaKey Project(1602FKDC007)supported by Science and Technology Program of Gansu Province,China+1 种基金Projects(2016YT03N101,2017A090905024)supported by Science and Technology Program of Guangdong Province,ChinaProject(NSFJ2015-K06)supported by Jiangxi University of Science and Technology,China
文摘In order to realize resource utilization of industrial tungsten residue and treatment of heavy metal wastewater in mining and metallurgical area of south China,a novel ceramsite was prepared with the main raw materials of diatomite and tungsten residue.The adsorption behavior of copper ions in solution on the ceramsite was investigated.Results indicated that the surface of the newly-developed ceramsite was rough and porous.There were lots of pores across the ceramsite from inner to outside.MnFe2O4 was one of the main components of the ceramsite.The Cu^2+adsorption capacity by the ceramsite reached 9.421 mg/g with copper removal efficiency of 94.21%at 303 K,initial Cu^2+concentration of 100 mg/L and dosage of 0.5 g after 300 min adsorption.With increase of ceramsite dosage,the total adsorption amount of Cu^2+increased,but the adsorption capacity decreased.The adsorption capacity increased with the increase of solution p H.The isothermal adsorption of Cu^2+by the ceramsite fitted the Freundlich model better.The adsorption mainly occurred on a heterogeneous surface,and was a favorable process.The adsorption process closely followed the pseudo-second kinetic equation.In initial stage of wastewater treatment,the adsorption process should be controlled mainly by diffusion,and the removal of Cu^2+can be improved by enhancing agitation.
基金Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130075110006)Education Innovation Project of Shanghai,China(No.12ZZ069)Natural Science Foundation of Shanghai,China(No.11ZR1400400)
文摘Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge by high-temperature sintering process,and then it’s physical properties,leaching toxicity and sintering mechanisms were investigated.The results showed that the preferred conditions for the preparation of ACFM were that the mass ratio of sludge,river sediment and fly ash was 5∶4∶1,preheated at 400℃for 20 min and sintered at 1 150℃for 5 min.After the optimal sintering conditions treatment,the physical properties of the rate of breaking and wear,solubility in hydrochloric acid,silt carrying capacity,void fraction and Brunauer-Emmett-Teller(BET)specific surface area of ACFM were 0.2%,0.01%,0.2%,71.1%and 0.75×104cm2/g,respectively.The results confirmed that the ACFM’s physical properties were totally aligned to the requirements of China’s industry standard(CJ/T 299—2008).The leaching toxicity results indicated that the leaching contents of heavy metals,such as Cr,Zn and Cu,were much lower than the thresholds of China’s national standards(GB 5085.3—2007 and GB 8978—1996).
基金Funded by the Doctoral Program of Higher Education of China(No.20100131110005)
文摘To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability.
基金Funded by the China National Key R&D Program(No.2018YFE0106300)the Fundamental Research Funds for the Central Universities(No.WUT:2019IB003)National Natural Science Foundation of China(No.51579159).
文摘A low-cost and efficient filter medium for Cd(Ⅱ) removal was prepared by anchoring-SCN functional groups(by 3-thiocyanatopropyltriethoxysilane, TCPS) on ceramsite via the approach of synthesizing a honeycomb calciumaluminum-silicate-hydrate(C-A-S-H) layer as intermediate. The specific surface area of ceramsite was increased enormously by more than 50 times because of the modification of honeycomb layer. Moreover, the abundant Si-OH bonds existing in the structure of CAS-H can serve as active sites for TCPS. The combined effects ensure that the hybrid filter medium(named ceramsite/C-A-S-H/TCPS) demonstrated a high Cd(Ⅱ) adsorption capacity of 18.27 mg·g^-1 for particle size of 0.1-0.6 mm, 12.63 mg·g^-1 for 0.6-1.25 mm and 8.64 mg·g^-1 for 1.25-2.35 mm. The Cd(Ⅱ) adsorption capacity per unit area of ceramsite/C-A-S-H/TCPS(0.1-0.6 mm) is up to 4.07 mg·m^-2, which is much higher than that of many nano-adsorbents. In addition, ceramsite/C-AS-H/TCPS could maintain a high removal efficiency(> 85%) in a wide range of p H 3-11 and showed excellent selectivity in the presence of competing ions. Furthermore, Cd(Ⅱ) could be desorbed from ceramsite/C-A-S-H/TCPS composites with nearly 100%, suggesting the potential application in recycling of heavy metal ions.
基金Supported by the Training Project of Beijing Young Talents(2114751406)the Beijing Social Science Fund(15JGB052)+1 种基金the Beijing Municipal Science and Technology Project(D161100005916004)Beijing outstanding talent project for excellent youth team(2015000026833T0000)
文摘Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu^(2+)and Cd^(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu^(2+) and Cd^(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g^(-1) and 3.84 mg·g^(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu^(2+) and Cd^(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.
基金Project(2014BAC31B01)supported by the National Science&Technology Support during the 12th Five-Year Plan Period,ChinaProjects(2015GSF117016,2015GSF115037)supported by the Key Research&Development Project of Shandong Province,China
文摘The easy acidification and high hydrogen sulfide (H2S) production during anaerobic digestion of macroalgae limited its application in biomethane production. In order to investigate the effects of ceramsite on methane and HzS productions during anaerobic digestion of macroalgae, batch experiments ofMacrocystis pyrifera were carried out. Four groups named C0, C1, C2 and C3 added with 0, 1.5, 3.0 and 4.5 g/g substrate of ceramsite, respectively, were studied and compared. The highest cumulative methane yield of 286.3 mL/g substrate is obtained in C2, which is 40.11% higher than that of CO. The cumulative HzS yields of C1, C2 and C3 are 32.67%, 44.66% and 53.21% lower than that of CO, respectively. Results indicate that ceramsite addition permits higher methane yields, shorter lag-phase time and lower HzS yields during anaerobic digestion of Macrocystispyrifera.
基金the Natural Science Foundation Training Project of Shandong Province,China(Grant No.ZR2018PEE026)the Science and Technology Planning Project of Zaozhuang City,Shandong Province,China(Grant No.2018GX12)+1 种基金the Project of Science Research Foundation of Zaozhuang University,China(Grant No.2017ZX16)the Doctoral Scientific Research Foundation of Zaozhuang University,China(Grant No.2017BS01).
文摘The regeneration of a spent packing is crucial with respect to the development of circular economy and abstemious society.Thus,the effects of regeneration temperature,resistant time,heating rate,and regeneration cycle on the breakthrough performance of methylene blue(MB)dye⁃exhausted ceramsite in a two⁃stage fixed⁃bed column were studied in this work.Results illustrate that the ceramsite exhibited excellent potential regeneration properties under the following optimal regeneration conditions:treatment temperature was 600°C,resistant time was 15 min,heating rate was 20℃/min,regeneration cycle was over 9 cycles,and the breakthrough time,saturation time,regeneration efficiency(RE),and regeneration loss rate(RLR)were 540 min,1020 min,64.61%,and 17.73%,respectively.The RE declined by 35.14%in over 1 cycle,while the RLR increased by 3.15 times in over 9 cycles.Besides,Thomas model was suitable to describe the two⁃stage fixed⁃bed column adsorption and thermal regeneration process with R2=0.978.In conclusion,a thorough understanding of the regeneration behavior of the two⁃stage fixed⁃bed column packed with ceramsite provides reference to obtain an effective and feasible regeneration approach,and it is beneficial for further application in water treatment.