期刊文献+
共找到1,151篇文章
< 1 2 58 >
每页显示 20 50 100
Reattachment of the Osteotomized Greater Trochanter in Hip Surgery Using an Ultrahigh Molecular Weight Polyethylene Fiber Cable: A Multi-Institutional Study 被引量:1
1
作者 Seiya Jingushi Tsutomu Kawano +8 位作者 Hirokazu Iida Kenichi Oe Kenji Ohzono Yoshihide Nakamura Makoto Osaki Hidetsugu Ohara Seung Bak Lee Toshihiko Hara Naohide Tomita 《Open Journal of Orthopedics》 2013年第6期283-289,共7页
The purpose of this multicenter study was to evaluate the clinical performance of an ultrahigh molecular weight polyethylene (UHMWPE) fiber cable for re-attachment of the osteotomized greater trochanter in hip surgery... The purpose of this multicenter study was to evaluate the clinical performance of an ultrahigh molecular weight polyethylene (UHMWPE) fiber cable for re-attachment of the osteotomized greater trochanter in hip surgery. Included in the study were 85 hips that had undergone surgery with greater trochanter osteotomy, including 50 hip arthroplasty procedures and 35 hip osteotomies. The osteotomized greater trochanter was reattached using one or more UHMWPE fiber cables. The bone union and displacement of the greater trochanter were assessed in radiographs for up to 12 months after surgery. Non-union of the osteotomy site occurred in 4.7% of the cases. In approximately 90% of the cases, displacement was less than 2 mm at up to 12 months after surgery. The UHMWPE fiber cable was a good biomaterial for reattaching the osteotomized greater trochanter and may also be an option for osteosynthesis procedures. 展开更多
关键词 Ultrahigh Molecular Weight polyethylene fiber CABLE Biomaterials OSTEOSYNTHESIS Greater Trochanter OSTEOTOMY Hip Operations ARTHROPLASTY
下载PDF
Surface Modification of Polyethylene Terephthalate(PET) Fiber by Roll-to-Roll Treatment in Atmospheric Ar/O_2 Dielectric Barrier Discharge(DBD) Plasma 被引量:2
2
作者 李嘉灵 林捷 +3 位作者 刁颖 胡倩倩 张菁 徐金洲 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期88-92,共5页
In this work,polyethylene terephthalate(PET) fibers were continuously treated by atmospheric dielectric barrier discharge(DBD) in Ar mixed O2 plasma,and the discharge was characterized by electrical function and optic... In this work,polyethylene terephthalate(PET) fibers were continuously treated by atmospheric dielectric barrier discharge(DBD) in Ar mixed O2 plasma,and the discharge was characterized by electrical function and optical diagnostics.It is found that the interfacial adhesion strength between treated PET fiber and resorcinol formaldehyde latex(RFL)(little)-rubber was improved(about 50%) by the measurement of interfacial shear strength(IFSS) and peel test.The wettability was improved rapidly in the initial treatment time.It is considered that oxidation chemical reaction as the major role of PET fiber surface modification is ahead of the physical etching effect.The high density of atomic oxygen in the plasma by optical emission spectroscopy supports the purpose.According to the scanning electron micrograph(SEM) image in the work,the longer treatment time obviously caused physical etching effect,which shall be less responsible for the improvement of the wettability. 展开更多
关键词 atmospheric pressure plasma polyethylene terephthalate(PET) fiber interfacial shear strength(IFSS) adhesion strength gas analyzer
下载PDF
Characterization and Comparison of Rheological Properties of Agro Fiber Filled High-Density Polyethylene Bio-Composites 被引量:1
3
作者 Anselm O. Ogah Joseph N. Afiukwa A. A. Nduji 《Open Journal of Polymer Chemistry》 2014年第1期12-19,共8页
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100... The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers. 展开更多
关键词 MELT RHEOLOGY Agro fiber BIO-COMPOSITES VISCOELASTICITY HIGH-DENSITY polyethylene
下载PDF
THE EFFECTS OF ULTRA DRAWING ON THE CRYSTAL STRUCTURE OF GEL SPUN POLYETHYLENE FIBERS
4
作者 陈克权 鲁平 +2 位作者 胡祖明 张安秋 吴宗铨 《Journal of Donghua University(English Edition)》 EI CAS 1989年第Z1期10-19,共10页
It is believed that gel spun polyethylene(PE)fibers have a somewhat extended chain crystalstructure,because of the disentangling of the chains which takes place in semi-dilute solutionand the ultra high draw ratio use... It is believed that gel spun polyethylene(PE)fibers have a somewhat extended chain crystalstructure,because of the disentangling of the chains which takes place in semi-dilute solutionand the ultra high draw ratio used.Ten years ago,PE shish-kebabs grown from dilute solutionwere proved to have extended chain backbone which causes the raising of its melting point.These crystals were found to have a triclinic crystal phase,This study shows a different result forgel spun ultra high drawn PE fiber.The unit cell remains orthorhombic even if the draw ratioreaches 50;as the draw ratio increases,the length in a and b axes are shortened while that in c ax-is changes quite insignificantly.When the draw ratio is over 10,two endothermic melting peakscan be seen in the DSC curves with corresponding peak temperature of 136.7-145.3℃.The lat-ter peak is attributed to the amount of extended chain crystal. 展开更多
关键词 polyethylene fibers CRYSTAL structure DRAWING GEL SPUN polyethylene fibers extended chain CRYSTAL ULTRA DRAWING
下载PDF
Manufacturing of Ultra-high Molecular Weight Polyethylene Fiber Reinforced Tape and the Loss of Strength
5
作者 胡祖明 刘兆峰 《Journal of China Textile University(English Edition)》 EI CAS 1999年第4期92-94,共3页
Due to the low density and excellent mechanical proper-ties,high performance fiber reinforced materials have aconsiderable application in the area of high technologyand dally usage.In this paper,the Ultra-high Molecu-... Due to the low density and excellent mechanical proper-ties,high performance fiber reinforced materials have aconsiderable application in the area of high technologyand dally usage.In this paper,the Ultra-high Molecu-lar Weight Polyethylene(UHMWPE)fiber reinforcedPE tape prepared with the method of powder impregnat-ion was studied.The effect of impregnate length and thetensile force of the yarn on the fiber content as well as on the strength and modulus of the tape were discussed.Calculation shows that the strength and the modulus ofthe ULMWPE fiber can keep about 85% after it undergothe process. 展开更多
关键词 Ultra - high molecular WEIGHT polyethylene fiber REINFORCED material TAPE IMPREGNATION
下载PDF
Improvement of Mechanical,Dynamic-Mechanical and Thermal Properties for Noil Ramie Fiber Reinforced Polyethylene Composites
6
作者 Zhang Yang Xue Ping +3 位作者 Ding Yun Jia Mingyin Shi Zhenwei Wang Hao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期121-128,共8页
Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic me... Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic mechanical and thermal properties are studied.The influence of ramie fiber and maleic anhydride-grafted polyolefin(MA-g-PO)on mechanical,dynamic mechanical and thermal properties is investigated.It is observed that the tensile,flexural and impact properties of the composites treated with MA-g-PO are all improved in comparison to the untreated composites.Dynamic mechanical properties of the composite with MA-g-PO show an increase in the storage modulus with a higherαrelaxation peak,together with the micromorphology analysis,indicating an improved interfacial bonding between fiber and matrix by the MA-g-PO addition.Furthermore,the change in TGA thermograms of composite caused by MA-g-PO exhibits that the addition of MA-g-PO is also helpful to increase the thermal stability of noil ramie fiber/HDPE composites. 展开更多
关键词 noil ramie fiber high density polyethylene(HDPE) mechanical properties MA-g-PO natural fi ber composites
下载PDF
Decorative Wood Fiber/High-Density Polyethylene Composite with Canvas or Polyester Fabric
7
作者 Jialin Lv Rao Fu +4 位作者 Yinan Liu Xuelian Zhou Weihong Wang Pengbo Xie Tingwei Hu 《Journal of Renewable Materials》 SCIE EI 2020年第8期879-890,共12页
Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating w... Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength. 展开更多
关键词 wood-plastic composites high-density polyethylene polyester fiber CANVAS surface decoration
下载PDF
Structural Changes of Polyethylene Terephthalate Fibers Grafted by Acrylamide
8
作者 施琴芬 戴礼兴 《Journal of Donghua University(English Edition)》 EI CAS 2003年第3期1-4,共4页
A group of grafted PET fibers with different graft yield are formed by grafting acrylamide onto the PET main chains. The structure of grafted fibers are studied by scanning electronic microscope ( SEM ), infra-red spe... A group of grafted PET fibers with different graft yield are formed by grafting acrylamide onto the PET main chains. The structure of grafted fibers are studied by scanning electronic microscope ( SEM ), infra-red spectrophotometer ( IR ), and differential scanning calorimetry(DSC). At the same time, the moisture regain, dyeability, strength, and elongation at break of the samples are measured and their relations with structural changes are discussed. Compared with ungrafted fiber, shape of the fiber cross-section, IR characteristic absorption peaks, and melting behavior of the grafted fibers have been changed, causing the fiber dyeability and moisture regain to be increased, and mechanical properties to be changed. 展开更多
关键词 polyethylene terephthalate fiber GRAFT ACRYLAMIDE STRUCTURE
下载PDF
Low Density Linear Polyethylene Reinforced with Alkali and MAPE Treated Fibers from Coffee Pulp
9
作者 Ahmat Tom Abel Tame +2 位作者 Paul Nestor Djomou Djonga Bakary Tigana Djonse Justin Eugenie Géraldine Nga Abena 《Open Journal of Composite Materials》 2021年第4期94-110,共17页
In this work fibers derived from coffee</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> hulls ha</span><span style="font-f... In this work fibers derived from coffee</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> hulls ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been incorporated into Linear Low Density Polyethylene (LLDPE). The influence of the filler content on </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">thermal and physicomechanical properties of the composites obtained was assessed. The results showed that the incorporation of fibers was able to improve the thermostability of LLDPE/Coffee hulls fibers;comparing the treated fiber composite with untreated fiber composites, the chemical treatment reduces by 58.3% the water absorption, while increasing the elongation and tensile strength by about 48% and 17% respectively. Moreover, due to better interfacial interaction induced by MAPE, the corresponding composite exhibited better properties compared to the untreated fiber composite. Results are indicative of the fact that both mercerization and MAPE (coupling agent) have significant positive effects on the fib</span><span style="font-family:Verdana;">er</span><span style="font-family:Verdana;">-matrix interaction in terms of adhesion, wetting and dispersion, this treatment produced a better fiber distribution and consequently a more uniform composite morphology without voids and gaps between the fibers and the matrix, allowing the possibility to use higher fiber contents (up to 30% wt.) with acceptable mechanical properties. 展开更多
关键词 fiber from Coffee fiber Hull Linear Low Density polyethylene Composite MAPE
下载PDF
Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates 被引量:3
10
作者 Chunyang Liu Yangyang Wu +1 位作者 Yingqi Gao Zhenyun Tang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期947-958,共12页
In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.... In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation. 展开更多
关键词 high-strength recycled concrete beam steel fiber large-particle recycled aggregates pre-damage reinforcement numerical simulation carrying capacity calculation
下载PDF
CT Image-based Analysis on the Defect of Polypropylene Fiber Reinforced High-Strength Concrete at High Temperatures 被引量:2
11
作者 杜红秀 JIANG Yu +1 位作者 LIU Gaili YAN Ruizhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期898-903,共6页
With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi... With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance. 展开更多
关键词 high-strength concrete polypropylene fiber high temperature X-ray computed tomography(CT) technology defect rate
下载PDF
Effect of Groundnut Shell Powder on the Mechanical Properties of Recycled Polyethylene and Its Biodegradability
12
作者 Mohammed Awwalu Usman Ibrahim Momohjimoh Abdulahi S. B. Gimba 《Journal of Minerals and Materials Characterization and Engineering》 2016年第3期228-240,共13页
Natural fiber reinforced composites have gained considerable attention particularly in the manufacturing industry owing to their light weight, corrosion resistance, abundance, and biodegradability. In this work, alkal... Natural fiber reinforced composites have gained considerable attention particularly in the manufacturing industry owing to their light weight, corrosion resistance, abundance, and biodegradability. In this work, alkaline treated and untreated groundnut shell powder (GSP) was used to reinforce recycled polyethylene to produce GSP-recycled polyethylene composites with improved mechanical properties and biodegradability. GSP with particle sizes of 0 - 300 μm and 300 - 600 μm was used in different proportions: 5%, 10%, 15%, 20%, 25%, and 30% wt. The fiber was immersed for 5 hours in a 10 wt% NaOH solution. Tensile and hardness test data showed an improvement in mechanical properties of the treated fiber composites. Results of water absorption test also showed that treated GSP-recycled polyethylene composites had a lower rate of water absorption than the untreated GSP-recycled polyethylene composites. Through Fourier transform infrared spectroscopy, disappearance of characteristics peaks of hemicellulose and lignin was observed. Growth of fungi on the fiber-reinforced composites was observed, which was evidence that GSP-recycled polyethylene composite was biodegradable. Finally, SEM micrographs showed uniform distribution of treated fibers in the polymer matrix;this explained the observed improvement in the mechanical properties of treated GSP-recycled polyethylene composites. 展开更多
关键词 Groundnut Shell Powder fibers Recycled polyethylene COMPOSITES Mechanical Properties BIODEGRADABILITY
下载PDF
Elasto-plastic Analysis of High-strength Concrete Shear Wall with Boundary Columns Using Fiber Model
13
作者 Xiaolong Tong Yangjing Ou +2 位作者 Sixi Xiao Jianliang Wu Fumin Chen 《Journal of Construction Research》 2020年第1期21-28,共8页
In this study,an experimental study and numerical calculations using fiber model were conducted for four high-strength concrete shear walls with boundary columns under low cyclic load.The boundary column and shear wal... In this study,an experimental study and numerical calculations using fiber model were conducted for four high-strength concrete shear walls with boundary columns under low cyclic load.The boundary column and shear wall were divided into fiber elements,and PERFORM-3D finite element analysis software was used to carry out push-over analysis on the test specimens.The results show that the finite element analysis results were in good agreement with the experimental results.The proposed analysis method could perform elasto-plastic analysis on the high-strength concrete shear wall with boundary columns without distinguishing the categories of frame column and shear wall.The seismic performance of high-strength concrete shear wall with boundary columns was analyzed using the following parameters:axis compression ratio,height to width ratio,ratio of vertical reinforcement,and ratio of longitudinal reinforcement in the boundary column.The results show that the increase in the axial compression ratio causes the bearing capacity of the shear wall to increase at first and then to decrease and causes the ductility to decrease.The increase in the height to width ratio causes the bearing capacity of the shear wall to decrease and its ductility to increase.The ratio of vertical reinforcement was found to have little effect on the bearing capacity and ductility.The increase in the ratio of longitudinal reinforcement in boundary column resulted in a significant increase in the bearing capacity and caused the ductility to decrease at first and then to slowly increase. 展开更多
关键词 Boundary columns high-strength concrete fiber model Shear wall
下载PDF
树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能
14
作者 杨琪 邓南平 +1 位作者 程博闻 康卫民 《纺织学报》 EI CAS CSCD 北大核心 2024年第3期1-10,共10页
为解决应用于全固态锂金属电池中固态有机电解质离子电导率较低和力学性能较弱的问题,采用静电纺丝技术制备了树枝状磺化聚醚砜(SPES)纳米纤维膜,将其与聚氧化乙烯(PEO)结合制备复合固态电解质,并应用于全固态锂金属电池中。探讨了纺丝... 为解决应用于全固态锂金属电池中固态有机电解质离子电导率较低和力学性能较弱的问题,采用静电纺丝技术制备了树枝状磺化聚醚砜(SPES)纳米纤维膜,将其与聚氧化乙烯(PEO)结合制备复合固态电解质,并应用于全固态锂金属电池中。探讨了纺丝工艺对纳米纤维形貌的影响,在最佳的静电纺丝工艺参数下,研究了SPES纳米纤维膜对复合固态电解质结晶度、离子电导率、力学性能以及电化学性能的影响。结果表明:在四丁基六氟磷酸铵质量分数为2%,静电纺丝电压为30 kV,接收距离为15 cm时,制备的树枝状SPES纳米纤维膜具有最好的形貌,将PEO浇筑在该纳米纤维膜上获得的复合固态电解质其离子电导率为8.13×10^(-5)S/cm(30℃),断裂强度为5.1 MPa,且可使对称电池在0.1 mA·h/cm^(2)下稳定循环198 h,使LiFePO_(4)/Li电池在循环400圈后仍保持着128.6 mA·h/g的放电比容量;SPES纳米纤维膜因破坏PEO的结晶区且能构成三维离子传输路径,不仅提高了复合固态电解质的离子电导率,还使复合固态电解质具有优异的力学强度,可满足高性能全固态锂金属电池的应用需求。 展开更多
关键词 复合固态电解质 锂金属电池 静电纺丝 磺化聚醚砜纤维 聚氧化乙烯 纳米纤维
下载PDF
高强度玻璃纤维对阻燃增强PET性能的影响
15
作者 蔡涛 康鹏 +3 位作者 辛琦 赵航 娄硕 高达利 《现代塑料加工应用》 CAS 北大核心 2024年第2期21-24,共4页
研究了高强度玻璃纤维对阻燃增强聚对苯二甲酸乙二酯(PET)材料性能的影响,并制备了综合性能优良的高性能阻燃增强PET材料,同时分析了高强度玻璃纤维和普通无碱玻璃纤维在PET材料中的尺寸分布。结果表明:高强度玻璃纤维的表面处理可以有... 研究了高强度玻璃纤维对阻燃增强聚对苯二甲酸乙二酯(PET)材料性能的影响,并制备了综合性能优良的高性能阻燃增强PET材料,同时分析了高强度玻璃纤维和普通无碱玻璃纤维在PET材料中的尺寸分布。结果表明:高强度玻璃纤维的表面处理可以有效提高阻燃增强PET材料的性能;阻燃增强PET的性能随着玻璃纤维含量的增加而提高,高强度玻璃纤维比普通无碱玻璃纤维能更好地改善PET材料的综合性能。 展开更多
关键词 高强度玻璃纤维 阻燃 增强 聚对苯二甲酸乙二酯
下载PDF
LLDPE/碳纤维网复合膜的制备及性能
16
作者 石素宇 张学锋 +2 位作者 白雨 王利娜 辛长征 《化工新型材料》 CAS CSCD 北大核心 2024年第3期98-101,108,共5页
为了提高线型低密度聚乙烯(LLDPE)的拉伸强度和模量,将碳纤维(CF)梳理成均匀的碳纤维网,将其作为增强材料与LLDPE复合制备LLDPE/CF复合膜,综合利用热失重分析(TG)、扫描示差量热分析(DSC)、扫描电子显微镜(SEM)及拉伸测试等手段分析碳... 为了提高线型低密度聚乙烯(LLDPE)的拉伸强度和模量,将碳纤维(CF)梳理成均匀的碳纤维网,将其作为增强材料与LLDPE复合制备LLDPE/CF复合膜,综合利用热失重分析(TG)、扫描示差量热分析(DSC)、扫描电子显微镜(SEM)及拉伸测试等手段分析碳纤维网含量对复合膜结构及性能的影响。结果表明:与LLDPE膜相比,LLDPE/CF复合膜的拉伸强度和杨氏模量显著提高并随碳纤维网含量增加而增大,当碳纤维网质量分数仅为1%时,拉伸强度从10.6MPa提高到28.7MPa,提高了171%,杨氏模量由75MPa增大到1119MPa,约提高到原来的15倍;碳纤维网的引入有利于LLDPE/CF复合膜热稳定性能的提高,当碳纤维网含量仅为1%时,LLDPE/CF的初始热分解温度和最大热分解速率温度与LLDPE相比分别提高了21℃和11℃;碳纤维网的引入促进了LLDPE分子链的结晶,使LLDPE/CF复合膜的结晶度增大,有利于拉伸强度和模量提高;SEM结果显示碳纤维网与LLDPE基体间的界面结合较强,有利于力学性能的提高。研究成果可为高性能聚合物/碳纤维复合材料的制备提供实验依据和理论指导价值。 展开更多
关键词 线型低密度聚乙烯 碳纤维网 复合膜 热压成型 高性能
下载PDF
高密度聚乙烯三维网状纳微米纤维的强伸性能
17
作者 西鹏 李永康 +2 位作者 程博闻 夏磊 舒登坤 《天津工业大学学报》 CAS 北大核心 2024年第2期10-15,共6页
为实现高密度聚乙烯三维网状纳微米纤维(PENFs)的自主化规模化生产,以高密度聚乙烯和二氯甲烷为原料,通过高压闪喷纺丝设备成功制备了性能优异的PENFs,采用响应面法对纺丝过程中各工艺参数进行优化,并对其力学性能和耐候性能进行分析。... 为实现高密度聚乙烯三维网状纳微米纤维(PENFs)的自主化规模化生产,以高密度聚乙烯和二氯甲烷为原料,通过高压闪喷纺丝设备成功制备了性能优异的PENFs,采用响应面法对纺丝过程中各工艺参数进行优化,并对其力学性能和耐候性能进行分析。结果表明:PENFs的最佳制备工艺条件为纺丝温度176.3℃、纺丝压力8.6 MPa、纺丝溶液质量分数8.0%,此时制得的PENFs的断裂强度和断裂伸长率分别可达到29.1 cN/dtex和99.9%,优于芳纶和涤纶等常规纤维;定伸长和定载荷条件下,PENFs的弹性回复能力随着拉伸次数和载荷的增加而逐渐降低,拉伸伸长为5%时PENFs纤维的弹性回复率可达到92.8%且拉伸10次后降低至75.5%,拉伸载荷为1.2 N时PENFs纤维的弹性回复率为84.6%;放置在室外20 d内PENFs纤维的强伸性能损失较小,30 d后断裂强度和断裂伸长率明显降低,但纤维外貌并无明显变化。 展开更多
关键词 高密度聚乙烯 纳微米纤维 三维网状结构 力学性能
下载PDF
聚乙烯纤维在混凝土中的应用研究进展
18
作者 李竞克 《合成树脂及塑料》 CAS 北大核心 2024年第3期74-78,共5页
综述了超高相对分子质量聚乙烯纤维及其他聚乙烯纤维对混凝土性能的影响,以及在混凝土开发中的应用研究进展。聚乙烯纤维的桥接作用可阻止混凝土裂纹的产生及扩展,提高混凝土的力学性能和耐腐蚀性能,一方面为聚乙烯纤维在建筑领域的应... 综述了超高相对分子质量聚乙烯纤维及其他聚乙烯纤维对混凝土性能的影响,以及在混凝土开发中的应用研究进展。聚乙烯纤维的桥接作用可阻止混凝土裂纹的产生及扩展,提高混凝土的力学性能和耐腐蚀性能,一方面为聚乙烯纤维在建筑领域的应用提供了可能,另一方面也为超高性能混凝土的开发提供了机遇。应加强聚乙烯纤维增强混凝土的系列化、标准化研究,尽快实现工业化。 展开更多
关键词 聚乙烯纤维 超高相对分子质量 纤维增强混凝土 力学性能 工业化
下载PDF
长玻纤/高密度聚乙烯复合材料的制备
19
作者 屈超 黄政 刘俊红 《化工技术与开发》 CAS 2024年第6期27-30,34,共5页
以N406作为偶联剂,向双螺杆挤出机中连续加入玻璃纤维(玻纤GF),再经剪切、混合工艺,共混制备了长玻纤增强高密度聚乙烯(HDPE)复合材料。采用万能拉伸测试仪、冲击强度测试仪和熔体流动速率(MFR)测试仪,测试了复合材料的力学性能和流动性... 以N406作为偶联剂,向双螺杆挤出机中连续加入玻璃纤维(玻纤GF),再经剪切、混合工艺,共混制备了长玻纤增强高密度聚乙烯(HDPE)复合材料。采用万能拉伸测试仪、冲击强度测试仪和熔体流动速率(MFR)测试仪,测试了复合材料的力学性能和流动性能;采用差式扫描量热仪(DSC)表征了复合材料的结晶温度、熔融温度;用热失重分析仪(TG)测量了复合材料的玻纤含量。研究结果表明,N406的用量对HDPE的拉伸强度的影响不大,但对冲击强度和MFR的影响较明显。偶联剂用量为8%时,相较未用偶联剂的长玻纤,增强HDPE复合材料的冲击强度提高了64.34%,MFR降低了40.07%。随着玻纤含量增加,拉伸强度、冲击强度升高,MFR降低;HDPE的结晶温度降低,熔融温度增加。玻纤含量为31.26%的复合材料,拉伸强度达到62.88MPa,较纯HDPE提高了180.97%。 展开更多
关键词 长玻璃纤维 高密度聚乙烯 偶联剂 复合材料
下载PDF
过滤吸油用PP/PE双组分熔喷非织造布的性能测试研究
20
作者 赵博 《合成纤维工业》 CAS 2024年第2期97-101,共5页
以不同质量比的聚丙烯(PP)、聚乙烯(PE)为原料制得PP/PE双组分熔喷非织造布,测试分析了PP/PE双组分熔喷非织造布的性能。结果表明:PP/PE双组分熔喷非织造布的纤网呈现蓬松杂乱的三维结构,纤维直径较细,孔隙率较高;随着PE添加比例增大,PP... 以不同质量比的聚丙烯(PP)、聚乙烯(PE)为原料制得PP/PE双组分熔喷非织造布,测试分析了PP/PE双组分熔喷非织造布的性能。结果表明:PP/PE双组分熔喷非织造布的纤网呈现蓬松杂乱的三维结构,纤维直径较细,孔隙率较高;随着PE添加比例增大,PP/PE双组分熔喷非织造布的面密度和厚度增大,拉伸断裂强力、顶破强力略有下降,硬挺度下降,透气性增大;当PP/PE质量比为73时,PP/PE双组分熔喷非织造布的水接触角在129°左右,吸油倍数为18.75,20 s内吸油高度为1.7 mm,空气过滤效率为56.82%,综合性能较好,可应用于过滤、吸油等领域。 展开更多
关键词 聚丙烯/聚乙烯纤维 熔喷法非织造布 过滤性能 吸油性能 测试
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部