For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
Along with strict environmental regulation, new-energy vehicles are becoming increasingly popular due to their low emissions, and they will inevitably replace existing fossil-fuel-based buses in China. To achieve a li...Along with strict environmental regulation, new-energy vehicles are becoming increasingly popular due to their low emissions, and they will inevitably replace existing fossil-fuel-based buses in China. To achieve a lightweight bus body ,high-strength steels are commonly used for the bus frame,but these grades are susceptible to corrosion. From the perspective of "lower life-cycle cost", high-strength stainless steel is a better bus structure choice than high-strength carbon steels, since stainless steel bus frames last 10-15 years without requiring any maintenance. The low-cost high-strength stainless steels developed by Baosteel are introduced,the yield and tensile strengths of which can be controlled to within the range of 350-700 MPa and 900-1 200 MPa,respectively, and the elongation values are above 30%. Measurements of the toughness and fatigue resistance of these high-strength stainless steels and their joints indicate that the structural integrity requirements for bus frames can be met. The results of salt spray corrosion studies indicate that stainless steels will substantially increase the service life of bus frames in wet and icy winter conditions where deicing with CaC12 is necessary for road safety. The results of our investigation clearly indicate that high-strength stainless steel is a potential bus-frame material that makes it possible to achieve substantial weight savings, excellent corrosion resistance, and prolonged operational life.展开更多
Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials a...Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.展开更多
Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular...Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.展开更多
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金sponsored by Shanghai Committee of Science and Technology with the project No.15XD1520100
文摘Along with strict environmental regulation, new-energy vehicles are becoming increasingly popular due to their low emissions, and they will inevitably replace existing fossil-fuel-based buses in China. To achieve a lightweight bus body ,high-strength steels are commonly used for the bus frame,but these grades are susceptible to corrosion. From the perspective of "lower life-cycle cost", high-strength stainless steel is a better bus structure choice than high-strength carbon steels, since stainless steel bus frames last 10-15 years without requiring any maintenance. The low-cost high-strength stainless steels developed by Baosteel are introduced,the yield and tensile strengths of which can be controlled to within the range of 350-700 MPa and 900-1 200 MPa,respectively, and the elongation values are above 30%. Measurements of the toughness and fatigue resistance of these high-strength stainless steels and their joints indicate that the structural integrity requirements for bus frames can be met. The results of salt spray corrosion studies indicate that stainless steels will substantially increase the service life of bus frames in wet and icy winter conditions where deicing with CaC12 is necessary for road safety. The results of our investigation clearly indicate that high-strength stainless steel is a potential bus-frame material that makes it possible to achieve substantial weight savings, excellent corrosion resistance, and prolonged operational life.
基金financial support provided by UGC-DAE-CSR (CSR-KN/CRS-04/201213/738) through fellowship
文摘Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2020A1515010095and 2023A1515010080)the Science and Technology Program of Guangzhou (Grant No. 202201010126)the Young Science and Technology Talent Support Project of Guangzhou Association for Science and Technology (Grant No. X20210201066)。
文摘Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.