期刊文献+
共找到193,368篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative research on the formability of several ultra-high-strength steels
1
作者 JI Dengpeng LIAN Changwei HAN Fei 《Baosteel Technical Research》 CAS 2023年第3期18-24,共7页
Three kinds of ultra-high-strength steels are subjected to uniaxial tensile,forming limit,and hole expansion tests to characterize their material forming properties.Results show that the elongation of S1500 reaches 12... Three kinds of ultra-high-strength steels are subjected to uniaxial tensile,forming limit,and hole expansion tests to characterize their material forming properties.Results show that the elongation of S1500 reaches 12.9%and is higher than that of MS1500 with the same strength grade but is lower than that of QP980.The forming limit of S1500 steel is higher than that of MS1500 but lower than that of QP980.The instantaneous n-value of the material changes with the volume fraction of retained austenite.The hole expansion ratios of S1500,MS1500,and QP980 steels are 31.3%,32.2%,and 28.3%,respectively.The hole expansion ratio of QP steel increases slightly with the increase in strength grade.This behavior is contrary to the change trend of elongation and forming limit.Among the three kinds of materials,QP980 steel has the best global formability,and S1500 steel has better global formability than martensitic steel with a similar strength grade.The local formability of the materials improves slightly with the decrease in the amount of retained austenite.MS1500 may have the best local formability in accordance with engineering practice. 展开更多
关键词 ultra-high-strength steel FORMABILITY TRIP effect
下载PDF
A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime 被引量:7
2
作者 Chengqi Sun Xiaolong Liu Youshi Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期383-391,共9页
In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in ... In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life. 展开更多
关键词 Very high-cycle fatigue - high-strength steels Fatigue life Inclusion size Crack growth rate
下载PDF
Cutting and Welding of High-Strength Steels Using Non-Vacuum Electron Beam as a Universal Tool for Material Processing 被引量:1
3
作者 Thomas Hassel Nils Murray +1 位作者 Georgii Klimov Alexander Beniyash 《World Journal of Engineering and Technology》 2016年第4期598-607,共11页
Using a non-vacuum electron beam, a two-step process chain for plate materials is a feasible possibility. Cutting and welding can be performed in subsequent steps on the same machine for a highly productive process ch... Using a non-vacuum electron beam, a two-step process chain for plate materials is a feasible possibility. Cutting and welding can be performed in subsequent steps on the same machine for a highly productive process chain. The electron beam is a tool with high energy conversion efficiency, which is largely independent of the type of metal. Its high power density qualifies the non-vacuum electron beam as an outstanding energy source for the well-known NVEB welding as well as for high-speed cutting. Welding is possible with or without filler wire or shielding gas, depending on the application. The NVEB-cutting process employs a co-moving cutting head with a sliding seal for extremely high cutting speeds producing high quality edges. Due to direct removal of fumes and dust, NVEBC with local suction is an exceptionally clean and fast process. The NVEB welding process is possible directly after cutting, without further edge preparation. The potential directions of development of non-vacuum electron beam technologies are discussed. An exemplary two-step process chain using high-strength steel is presented to highlight possible application in industries such as general steel construction, automotive, shipbuilding, railway vehicle or crane construction. An analysis of the mechanical properties of the resulting weld seam is presented. 展开更多
关键词 WELDING high-strength steels Non-Vacuum Electron Beam Welding Non-Vacuum Electron Beam Cutting
下载PDF
Effect of electroslag remelting and homogenization on hydrogen flaking in AMS-4340 ultra-high-strength steels 被引量:4
4
作者 Shivraj Singh Kasana O.P.Pandey 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第5期611-621,共11页
Hydrogen flakes and elemental segregation are the main causes of steel rejection. To eliminate hydrogen flaking, the present study focuses on the manufacture of AMS-4340 ultra-high-strength steel through an alternate ... Hydrogen flakes and elemental segregation are the main causes of steel rejection. To eliminate hydrogen flaking, the present study focuses on the manufacture of AMS-4340 ultra-high-strength steel through an alternate route. AMS-4340 was prepared using three different processing routes. The primary processing route consisted of melting in an electric arc furnace, refining in a ladle refining furnace, and vacuum degassing. After primary processing, the heat processes(D1, D2, and D3) were cast into cylindrical electrodes. For secondary processing, electroslag remelting(ESR) was carried out on the primary heats to obtain four secondary heats: E1, E2, E3, and E4. Homogenization of ingots E1, E2, E3, and E4 was carried out at 1220°C for 14, 12, 12, and 30 h, respectively, followed by an antiflaking treatment at 680°C and air cooling. In addition, the semi-finished ESR ingot E4 was again homogenized at 1220°C for 6–8 h and a second antiflaking treatment was performed at 680°C for 130 h followed by air cooling. The chemical segregation of each heat was monitored through a spectroscopy technique. The least segregation was observed for heat E4. Macrostructure examination revealed the presence of hydrogen flakes in heats E1, E2, and E3, whereas no hydrogen flakes were observed in heat E4. Ultrasonic testing revealed no internal defects in heat E4, whereas internal defects were observed in the other heats. A grain size investigation revealed a finer grain size for E4 compared with those for the other heats. Steel produced in heat E4 also exhibited superior mechanical properties. Therefore, the processing route used for heat E4 can be used to manufacture an AMS-4340 ultra-high-strength steel with superior properties compared with those of AMS-4340 prepared by the other investigated routes. 展开更多
关键词 AMS-4340 steel SEGREGATION and HOMOGENIZATION antiflaking treatment ELECTROSLAG REMELTING
下载PDF
Effects of Microstructural Modification Using Friction Stir Processing on Fatigue Strength of Butt-Welded Joints for High-Strength Steels
5
作者 Hajime Yamamoto Kazuhiro Ito 《Materials Sciences and Applications》 2018年第7期625-636,共12页
Friction stir processing (FSP) is an effective surface-microstructure modification technique using a rotational tool to refine and homogenize microstructure of metallic materials. In this study, FSP was conducted on t... Friction stir processing (FSP) is an effective surface-microstructure modification technique using a rotational tool to refine and homogenize microstructure of metallic materials. In this study, FSP was conducted on the surface of the heat-affected zone (HAZ), which is a region exhibiting degraded mechanical properties and shown to have microstructural changes, of butt-welded joints for two high-strength steels with tensile strength grades of 490 MPa and 780 MPa (hereafter HT490 and HT780, respectively). Inhomogeneous mixing of materials derived from weld metals and base metals (BMs) in a stir zone (SZ) produced inhomogeneous distribution of elements and microstructure depending on the set of the advancing side and retreating side in the SZs. The welded joints with FSP for HT490 exhibited higher hardness than that of the BM through whole of the SZ surface (fine polygonal ferrite grains and bainite structure with laths at the Mn-rich and Mn-poor regions, respectively). On the other hand, those for HT780 exhibited the minimum hardness value similar to that of the BM at the SZ surface (a few polygonal ferrite grains in the matrix of martensite laths). Fatigue strength increased by about 35 MPa and 15 MPa in stress amplitude at 107 cycles as fatigue limit due to FSP. Fatigue failure occurred at the BM and the SZ, respectively, in the welded joints modified by FSP for HT490 and HT780, in comparison with the HAZs in the as-welded joints for both grade steels. The difference in fatigue strength increase due to FSP and failure location between the welded joints for HT490 and HT780 can be attributed to the topmost SZ microstructures and their distribution. 展开更多
关键词 FRICTION STIR Processing (FSP) high-strength steel Fatigue Strength GRAIN REFINEMENT Post-Weld Treatment
下载PDF
Weldable high-strength steels: Challenges and engineering applications
6
作者 David A.Porter 谷森 《机械制造文摘(焊接分册)》 2015年第4期26-28,共3页
68 IIW Annual Assembly&International; Conference of the International Institute of Welding,2-3 July 2015,Helsinki,Finland Portevin LectureHigh-strength steels are finding ever-wider applications as awareness of th... 68 IIW Annual Assembly&International; Conference of the International Institute of Welding,2-3 July 2015,Helsinki,Finland Portevin LectureHigh-strength steels are finding ever-wider applications as awareness of the potential benefits spread and the knowledge required by designers increases.According to the different processing routes,the YS levels of high-strength steels are commercially available as follows: 展开更多
关键词 steels AWARENESS FINLAND WELDING commercially bene
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
7
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel
8
作者 Xuelin Wang Zhenjia Xie +1 位作者 Xiucheng Li Chengjia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1298-1310,共13页
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc... High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel. 展开更多
关键词 high-strength steel MICROSTRUCTURE VISUALIZATION DIGITIZATION quantification mechanical properties
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
9
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Fatigue cracking criterion of high-strength steels induced by inclusions under high-cycle fatigue 被引量:1
10
作者 Peng Wang Peng Zhang +3 位作者 Bin Wang Yankun Zhu Zikuan Xu Zhefeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期114-128,共15页
Fatigue properties of high-strength steels become more and more sensitive to inclusions with enhancing the ultimate tensile strength (UTS) because the inclusions often cause a relatively low fatigue strength and a lar... Fatigue properties of high-strength steels become more and more sensitive to inclusions with enhancing the ultimate tensile strength (UTS) because the inclusions often cause a relatively low fatigue strength and a large scatter of fatigue lives. In this work, four S–N curves and more than 200 fatigue fracture morphologies were comprehensively investigated with a special focus on the size and type of inclusions at the fatigue cracking origin in GCr15 steel with a wide strength range by different heat treatments after high-cycle fatigue (HCF). It is found that the percentage of fatigue failure induced by the inclusion including Al2 O3 and TiN gradually increases with increasing the UTS, while the percentage of failure at sample surfaces decreases conversely and the fatigue strength first increases and then decreases. Besides, it is interestingly noted that the inclusion sizes at the cracking origin for TiN are smaller than that for Al2 O3 because the stress concentration factor for TiN is larger than that for Al2 O3 based on the finite element simulation. For the first time, a new fatigue cracking criterion including the isometric inclusion size line in the strength-toughness coordinate system with specific physical meaning was established to reveal the relationship among the UTS, fracture toughness, and the critical inclusion size considering different types of inclusions based on the fracture mechanics. And the critical inclusion size of Al2 O3 is about 1.33 times of TiN. The fatigue cracking criterion could be used to judge whether fatigue fracture occurred at inclusions or not and provides a theoretical basis for controlling the scale of different inclusion types for high-strength steels. Our work may offer a new perspective on the critical inclusion size in terms of the inclusion types, which is of scientific interest and has great merit to industrial metallurgical control for anti-fatigue design. 展开更多
关键词 high-strength steel High-cycle fatigue Critical inclusion size Inclusion types Tensile strength Fracture toughness Fatigue cracking criterion
原文传递
Effect of temperature and time on the precipitation ofκ-carbides in Fe-28Mn-10Al-0.8C low-density steels:Aging mechanism and its impact on material properties
11
作者 Yulin Gao Min Zhang +3 位作者 Rui Wang Xinxin Zhang Zhunli Tan Xiaoyu Chong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2189-2198,共10页
In low-density steel,κ-carbides primarily precipitate in the form of nanoscale particles within austenite grains.However,their precipitation within ferrite matrix grains has not been comprehensively explored,and the ... In low-density steel,κ-carbides primarily precipitate in the form of nanoscale particles within austenite grains.However,their precipitation within ferrite matrix grains has not been comprehensively explored,and the second-phase evolution mechanism during aging remains unclear.In this study,the crystallographic characteristics and morphological evolution ofκ-carbides in Fe-28Mn-10Al-0.8C(wt%)low-density steel at different aging temperatures and times and the impacts of these changes on the steels’microhardness and properties were comprehensively analyzed.Under different heat treatment conditions,intragranularκ-carbides exhibited various morpho-logical and crystallographic characteristics,such as acicular,spherical,and short rod-like shapes.At the initial stage of aging,acicularκ-carbides primarily precipitated,accompanied by a few spherical carbides.κ-Carbides grew and coarsened with aging time,the spherical carbides were considerably reduced,and rod-like carbides coarsened.Vickers hardness testing demonstrated that the material’s hardness was affected by the volume fraction,morphology,and size ofκ-carbides.Extended aging at higher temperatures led to an increase in carbide size and volume fraction,resulting in a gradual rise in hardness.During deformation,the primary mechanisms for strengthening were dislocation strengthening and second-phase strengthening.Based on these findings,potential strategies for improving material strength are proposed. 展开更多
关键词 low-density steel κ-carbide solution-aging treatment HARDNESS
下载PDF
Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification
12
作者 Xiangyu Xu Lu Zhang +3 位作者 Zifei Wang Qianren Tian Jianxun Fu Xuemin Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1849-1857,共9页
Te treatment is an effective method for modifying sulfide inclusions,and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance.In most actual industrial applications of Te tr... Te treatment is an effective method for modifying sulfide inclusions,and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance.In most actual industrial applications of Te treatment,MnTe precipitation is unexpected.The critical precipitation behavior of MnTe inclusions was investigated through scanning electron microscopy,transmission electron microscopy,machine learning,and first-principles calculation.MnTe preferentially precipitated at the container mouth for sphere-like sulfides and at the interface between MnS grain boundaries and steel matrix for rod-like sulfides.The MnS/MnTe interface was semicoherent.A composition transition zone with a rock-salt structure exhibiting periodic changes existed to maintain the semicoherent interface.The critical precipitation behavior of MnTe inclusions in resulfurized steels involved three stages at varying temperatures.First,Mn(S,Te)precipitated during solidification.Second,MnTe with a rock-salt structure precipitated from Mn(S,Te).Third,MnTe with a hexagonal NiAs structure transformed from the rock-salt structure.The solubility of Te in MnS decreased with decreasing temperature.The critical precipitation behavior of MnTe inclusions in resulfurized steels was related to the MnS precipitation temperature.With the increase in MnS precipitation temperature,the critical Te/S weight ratio decreased.In consideration of the cost-effectiveness of Te addition for industrial production,the Te content in resulfurized steels should be controlled in accordance with MnS precipitation temperature and S content. 展开更多
关键词 resulfurized steels modification of inclusion manganese telluride precipitation
下载PDF
Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models
13
作者 Shuaishuai Xiao Jialong Shen +3 位作者 Jianing Zhao Jie Fang Caiyu Liang Lei Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2681-2691,共11页
Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization m... Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling. 展开更多
关键词 MICROSTRUCTURE electromagnetic sensor finite element duplex stainless steel
下载PDF
Review on the plastic instability of medium -Mn steels for identifying the formation mechanisms of Lüders and Portevin -Le Chatelier bands
14
作者 Bin Hu Han Sui +3 位作者 Qinghua Wen Zheng Wang Alexander Gramlich Haiwen Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1285-1297,共13页
Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years... Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years.Unfortunately,research results are controversial,and no consensus has been achieved regarding the topic.Here,we first summarize all the possible factors that affect the yielding and flow stress serrations in MMnS,including the morphology and stability of austenite,the feature of the phase interface,and the deformation parameters.Then,we propose a universal mechanism to explain the conflicting experimental results.We conclude that the discontinuous yielding can be attributed to the lack of mobile dislocation before deformation and the rapid dislocation multiplication at the beginning of plastic deformation.Meanwhile,the results show that the stress serrations are formed due to the pinning and depinning between dislocations and interstitial atoms in austenite.Strain-induced martensitic transformation,influenced by the mechanical stability of austenite grain and deformation parameters,should not be the intrinsic cause of plastic instability.However,it can intensify or weaken the discontinuous yielding and the stress serrations by affecting the mobility and density of dislocations,as well as the interaction between the interstitial atoms and dislocations in austenite grains. 展开更多
关键词 medium manganese steel discontinuous yielding stress serrations retained austenite dislocations
下载PDF
Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels
15
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +3 位作者 Saeed Sadeghpour Milad Zolfipour Aghdam Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2182-2188,共7页
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare... The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range. 展开更多
关键词 austenitic stainless steels mechanical behavior stacking fault energy METASTABILITY mechanical twinning
下载PDF
A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing
16
作者 Huajing Zong Nan Kang +1 位作者 Zehao Qin Mohamed El Mansori 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1048-1071,共24页
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak... The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced. 展开更多
关键词 additive manufacturing laser powder bed fusion tool steel multi-scaled structure mechanical properties thermal properties
下载PDF
Progress in weldability research of duplex stainless steels
17
作者 刘爱国 《China Welding》 CAS 2024年第2期50-62,共13页
Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding proce... Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding processes,if proper heat input is provided.Progresses of research works on weldability of DSSs in recent years are reviewed in this paper.Balance control of ferrite/austenite phases is most important for DSSs welding.The phases balance can be controlled with filler materials,nitrogen addition in shielding gas,heat input,post weld heat treatment,and alternating magnetic field.Too high cooling rate results in not only extra ferrite,but also chromium nitride precipitation.While too low cooling rate or heating repeatedly results in precipitation of secondary austenite and intermetallic compounds.In both situations,mechanical properties and corrosion resistance of the DSS joints deteriorate.Recommended upper and lower limits of heat input and maximum interpass temperature should be observed. 展开更多
关键词 duplex stainless steel WELDABILITY phases balance secondary phase
下载PDF
Experimental study on the forming characteristics of 1.5 GPa ultrahigh-strength dual-phase steel
18
作者 LI Ya LIAN Changwei HAN Fei 《Baosteel Technical Research》 CAS 2024年第3期10-15,共6页
The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed... The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed for the successful application of dual-phase steel series in engineering structures.Therefore,differences in the mech-anical properties,forming limit,hole expansion ratio,and stretch bend limit of the 1.5 GPa ultrahigh-strength steel,including DP1500,QP1500,and MS1500,have been systematically studied.Results show that the DP1500 exhibits good plastic deformation performance and approximately 5% uniform elongation,and its true major strain minimum on the forming limit curve(FLC_(0)) value is approximately 0.083,which is higher and lower than the FLC_(0) values of MS1500 and QP1500 of the same strength grade,respectively.DP1500 also exhibits good flanging and pore expansion capabilities and superior performance to QP1500 and MS1500.The minimum radius-to-thickness(R/T) ratio(1.4) of DP1500 in the 90° bend tests transverse to the rolling direction is between the R/T ratios of MS1500 and the QP1500.Overall,the formability performance of DP1500 is between that of MS1500 and QP1500.Its excellent crash energy absorption and formability performance render it a suitable structural component,and it has been successfully tested and verified on a typical complex ultrahigh-strength steel skeleton structure. 展开更多
关键词 forming limit hole expansion ratio ultrahigh-strength steel
下载PDF
Development of a new irradiation-embrittlement prediction model for reactor pressure-vessel steels
19
作者 Qi-Bao Chu Lu Sun +1 位作者 Zhen-Feng Tong Qing Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期182-192,共11页
Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction mo... Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition. 展开更多
关键词 Reactor pressure vessel steel Transition temperature shift Irradiation embrittlement Embrittlement trend curve Prediction model
下载PDF
A Physical Core-Loss Model for Laminated Magnetic Sheet Steels
20
作者 Kuofeng Chen 《Journal of Power and Energy Engineering》 2024年第3期115-123,共9页
A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation pro... A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation provides high simulation accuracy and performs dynamic core loss analysis on non-sinusoidal or pulse magnetic fields. The simulation examples use a high-grade electrical steel sheet 65CS400 by Epstein experimental data covering magnetic field 0.1 - 1.8 T and frequency 50 - 5000 Hz, and the average error of the simulated core loss is less than 4%. Since the simulation is converged by magnetic physical parameters, so the physical relevance of the similar laminated materials can be compared with the coefficient results. . 展开更多
关键词 Core Loss Hysteresis Loss Electrical steel Sheet
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部