The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and different...The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC.展开更多
The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can ...The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can obtain an ultrafineαphase by using the α″phase assisted nucleation.The bimodal microstructure obtained with the heat-treatment process can confer the alloy with a good balance between the strength and plasticity.The deformation mechanism is the dislocation slip and the{1101}twinning in the primary α phase.The strengthening mechanism is α/β interface strengthening.The interface of(0001)α/(110)β has a platform−step structure,whereas(1120)α/(111)βinterface is flat with no steps.展开更多
A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The microstructure,crystallographic orientation and corrosion performance of extrusion-directio...A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The microstructure,crystallographic orientation and corrosion performance of extrusion-direction,transverse-direction,and normal-direction specimens were investigated using scanning electron microscopy,electron backscatter diffraction,and atomic force microscopy,respectively.Experimental results showed that crystallographic orientation significantly influenced the corrosion performance of AZ80 Mg alloy.Corrosion rates largely increased with decreased(0001)crystallographic plane intensity,whereas the(10−10)and(2−1−10)crystallographic plane intensities increased.This study showed that the corrosion rates of alloy can be modified to some extent by controlling texture,thereby promoting the applications of high-strength AZ80 Mg alloys in the aerospace and national-defense fields.展开更多
The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rat...The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships.展开更多
The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters...The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their maximums (331 MPa and 4%) at 37.5 mm/min and 300 rpm. As welding parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side.展开更多
The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtai...The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64–xMo alloys were calculated using the Thermo-Calc software. After aging at 600℃, the Ti64–6 Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64–xMo alloys at 600℃. Bulk forged Ti64–6 Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size.展开更多
High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-p...High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-proof alloy design.This article concludes the factors influencing the ignition resistance of Mg alloys from oxide film and substrate microstructure,and also the mechanisms of alloying elements improving the ignition resistance.The low strength is another reason restricting the development of Mg alloys.Therefore,at the last section,Mg alloys with the combination of high strength and good ignition-proof performance are summarized,including Mg-Al-Ca based alloys,SEN(Mg-Al-Zn-Ca-Y)alloys as well as Mg-Y and Mg-Gd based alloys.Besides,the shortages and the future focus of theses alloys are also reviewed.The aim of this article is to promote the understanding of oxidation and ignition mechanisms of Mg alloys and to provide reference for the development of Mg alloys with high strength and excellent ignition-proof performance at the same time.展开更多
Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately containe...Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately contained a mistake. The presentation of Fig. 11 was incorrect. The correct version is given below:展开更多
Wrought magnesium alloys with high-strength and high-ductility property have been attracting more and more interest in automotive and aerospace industries,and the conventional Mg-Zn based alloys are widely accepted as...Wrought magnesium alloys with high-strength and high-ductility property have been attracting more and more interest in automotive and aerospace industries,and the conventional Mg-Zn based alloys are widely accepted as the representative one.Development of Mg-Zn based alloys with rare earth(RE)element additions and with modified preparation processes domains the evolution of their potential structural applications.Nonetheless,their highest tensile yield strength(TYS)is still in the order of 400 MPa,clearly lower than that of the Mg-RE based alloys,in the order of 500 MPa,much less compared with the high-strength aluminum alloys and titanium alloys.According to many previous investigations,two relatively efficient methods to improve mechanical properties of ZK based alloys were revealed as:alloying by RE and optimizing wrought processes.However,comprehensive combinative investigation was hitherto not conducted to date.Thus,it is imperative in the next work to further improve the yield strength to the order of 500 MPa or much higher,and simultaneously modify the tension-compression strength asymmetry of the ZK series alloys.Maybe,developing novel wrought processes for ZK60(+RE)alloys or exploring appropriate pre-dealing treatments before or after the wrought processes might be an important approach to accomplish a much higher level of balance of high-strength and high-ductility.展开更多
Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively ...Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively poor, which limits their industrial applications. The joints shall be protected against corrosion. In this review, therefore, the current status and development of corrosion protection for FSW high-strength Al alloy joints are presented. Particular emphasis has been given to different protection methods : lowering heat input, post-weld heat treatment, surface modification and spray coatings. Finally, opportunities are identified for further research and development in corrosion protection of FSW high-strength Al alloy joints.展开更多
The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at ca...The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process.展开更多
The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro...The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. .展开更多
To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the ef...To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the effect of Nb addition on the microstructure,mechanical properties and castability of Ti-15 Mo alloy.Phase analysis and microstructure observation show that all the alloys consist of single β phase and the equiaxed β grain is refined with increasing Nb content.These β-type Ti-15Mo-xNb alloys exhibit good plasticity and rather low compression elastic modulus(in the range of 18.388-19.365 GPa).After Nb addition,the compression yield strength of the alloys increases.With increasing Nb content,the micro-hardness of the alloys decreases.The alloys exhibit obvious fibrous strip microstructure after cold compression deformation.The castability test shows that the castability of the alloys after Nb addition decreases and that of the Ti-15 Mo alloy is the highest(92.01%).展开更多
Alloying is a good approach to increasing its strength but leads to a reduction of damping to pure magnesium.Classifying the alloying characteristics of various alloying elements in magnesium alloys and their combined...Alloying is a good approach to increasing its strength but leads to a reduction of damping to pure magnesium.Classifying the alloying characteristics of various alloying elements in magnesium alloys and their combined effects on the damping and mechanical properties of magnesium alloys is important.In this paper,the properties of the Mg-0.6wt%X binary alloys were analyzed through strength measurements and dynamic mechanical analysis.The effects of foreign atoms on solid-solution strengthening and dislocation damping were studied comprehensively.The effect of solid solubility on damping capacity can be considered from two perspectives:the effect of single solid-solution atoms on the damping capacities of the alloy,and the effect of solubility on the damping capacities of the alloy.The results provide significant information that is useful in developing high-strength,high-damping magnesium alloys.This study will provide scientific guidance regarding the development of new types of damping magnesium alloys.展开更多
The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transform...The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transformation model describing the conversion of γ-Fe OOH to α-Fe OOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-Fe OOH into α-Fe OOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products.展开更多
In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy...In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy showed columnarβgrains spreading over multiple layers and paralleling to the building direction.The distinct microstructure of as-fabricated alloy was composed of near-β(more than 98.1%)with a submicron cellular structure.Different SLM processing parameters such as hatch spacing could affect the microstructure of as-fabricated alloy,which could thus further significantly affect the mechanical properties of as-fabricated alloy.In addition,the as-fabricated alloy with the distinct microstructure exhibits yield strength of 818 MPa combined with elongation of more than 19%,which shows that SLM is a potential technology for manufacturing near-beta titanium components.展开更多
The extruded plate of powder metallurgy AA2024 aluminum alloy was successfully solid-state joined by friction stir welding(FSW) to demonstrate potential applications in the aerospace and automotive industries. For det...The extruded plate of powder metallurgy AA2024 aluminum alloy was successfully solid-state joined by friction stir welding(FSW) to demonstrate potential applications in the aerospace and automotive industries. For determining the optimal processing parameters of FSW, the microstructure, mechanical properties, and fracture behavior of FSW joints were evaluated. When the processing parameters were optimized with 2000 r/min rotation speed and100 mm/min traverse speed, high quality welds were achieved. The ultimate tensile strength yield strength and elongation of the joint can reach 415 MPa(85% of the base metal strength), 282 MPa, and 9.5%, respectively. The hardness of the joint gradually decreased from the alloy matrix to the heat-affected zone. The lowest strength and hardness appeared near the heat-affected zone because of the over-aging caused by heat flow from repeated stirring during FSW. The average grain size of the stir zone(2.15 μm) was smaller than that of the base metal(4.43 μm) and the heat-affected zone(5.03 μm), whose grains had <110> preferred orientation.展开更多
Composition and service properties of high - strength low-alloyed steels with 590-980 MPa yield strength,which find an application in Russia, Belorus,Ukraine and other countries of the former USSR in manufacture of w...Composition and service properties of high - strength low-alloyed steels with 590-980 MPa yield strength,which find an application in Russia, Belorus,Ukraine and other countries of the former USSR in manufacture of welded structures of a powerful mining and transport machinery, are given. Electrodes and wires for main processes of arc welding of these steels have been devel- oped on the basis of a rational use of different systems of alloying (08KhN2GM,08KhNG2M, and also economical systems of type 10G25, ect. ). Main approaches to the technological provess- es of manufacture of structures of high - strength steels are formulated.They are mainly directed to the weakening of de offect of the factors which contribute to a delayed fracture of joints (diffusive hydrogen,unfavourable rates of cooling,level of residual stresses). When there are no stress concentrators (and at a low level of residual stresses) the welded joints of these steels have a good resistance to fatigue and brittle fractures.As a rule, they are prevented with the help of the known approaches.It is shown that in addition to them and due to a proper selection of conditions of welding the life of welded joints of the high - strength steels can be 1. 2 - 1. 4 times in- creased.展开更多
The quench transfomation in a Ti-10V-2Fe-3Al near B-titanium alloy was studied by means of X-ray diffraction, transmission electron microscopy, and optical micyoscopy. The quenching temperatures were above and below t...The quench transfomation in a Ti-10V-2Fe-3Al near B-titanium alloy was studied by means of X-ray diffraction, transmission electron microscopy, and optical micyoscopy. The quenching temperatures were above and below the β transus temperature. The phase constitutions of specimens quenched from various solution temperatures were identified and the phase morphologies were examined. In addition, the relationship between phase lattice parameters and quenching tempera- tures was given for α, β and α ^(11) phases. This alloy has a tendency of precipitation of athermal ω phase and formation of stress induced α^(11) mar- tensite from β phase during quenching. Quenched from the temperatures above the β transus tem- perature, the alloy mainly consists of β phase, a small amount of α^(11) martensite and athemal ω phase aye also present in the alloy. After quenching from the temperatures below the β transus temperature, the α phase appeays in the alloy in addition to the phases mentioned above.展开更多
The effect of die forging on the microstructure evolution and deformation behavior of metastable β-titanium alloy Ti55511 was investigated by electron backscatter diffraction.Before die forging,the alloy Ti55511 was ...The effect of die forging on the microstructure evolution and deformation behavior of metastable β-titanium alloy Ti55511 was investigated by electron backscatter diffraction.Before die forging,the alloy Ti55511 was subjected to multi-pass forging to optimize the microstructural heterogeneity(texture)which can cause mechanical behavior anisotropy of titanium alloys.Results show that after die forging,Ti55511 components exhibit different microstructures and textures in different local areas.No<100>fiber texture is found in all areas with different degrees of deformation.Dynamic recrystallization occurs in the area where large strain occurs during the early stage of die forging.Basket-weave microstructure forms in most local areas.展开更多
基金Project(AA17202007) supported by the Special Funding for Innovation-Driven Development of Guangxi Province,China。
文摘The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC.
基金Projects(2016YFB0701301,2018YFB0704100)supported by the National Key Technologies R&D Program of ChinaProjects(51901251,51671218,51501229)supported by the National Natural Science Foundation of ChinaProject(2020JJ5750)supported by the Natural Science Foundation of Hunan Province,China。
文摘The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can obtain an ultrafineαphase by using the α″phase assisted nucleation.The bimodal microstructure obtained with the heat-treatment process can confer the alloy with a good balance between the strength and plasticity.The deformation mechanism is the dislocation slip and the{1101}twinning in the primary α phase.The strengthening mechanism is α/β interface strengthening.The interface of(0001)α/(110)β has a platform−step structure,whereas(1120)α/(111)βinterface is flat with no steps.
基金The authors gratefully acknowledge the National Natural Science Foundation of China(grant no.51501181)
文摘A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The microstructure,crystallographic orientation and corrosion performance of extrusion-direction,transverse-direction,and normal-direction specimens were investigated using scanning electron microscopy,electron backscatter diffraction,and atomic force microscopy,respectively.Experimental results showed that crystallographic orientation significantly influenced the corrosion performance of AZ80 Mg alloy.Corrosion rates largely increased with decreased(0001)crystallographic plane intensity,whereas the(10−10)and(2−1−10)crystallographic plane intensities increased.This study showed that the corrosion rates of alloy can be modified to some extent by controlling texture,thereby promoting the applications of high-strength AZ80 Mg alloys in the aerospace and national-defense fields.
基金supported by the National Key R&D Program of China(No.2021YFB3701100)the National Natural Science Foundation of China(No.52271091)the China Scholarship Council(No.202206050135)。
文摘The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships.
文摘The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their maximums (331 MPa and 4%) at 37.5 mm/min and 300 rpm. As welding parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side.
基金financial support from the National Key Technologies R&D Program of China (Grant No. 2016YFB0701301 and 2018YFB0704100)National Natural Science Foundation of China (Grant No. 51671218 and 51501229)+1 种基金National Key Basic Research Program of China (973 Program) (Grant No. 2014CB644000)State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
文摘The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64–xMo alloys were calculated using the Thermo-Calc software. After aging at 600℃, the Ti64–6 Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64–xMo alloys at 600℃. Bulk forged Ti64–6 Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size.
基金the financial supports from the National Key Research and Development Plan(Grant No.2021YFB3701100)the National Natural Science Foundation of China(Grant No.U2241231,No.52071206)。
文摘High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-proof alloy design.This article concludes the factors influencing the ignition resistance of Mg alloys from oxide film and substrate microstructure,and also the mechanisms of alloying elements improving the ignition resistance.The low strength is another reason restricting the development of Mg alloys.Therefore,at the last section,Mg alloys with the combination of high strength and good ignition-proof performance are summarized,including Mg-Al-Ca based alloys,SEN(Mg-Al-Zn-Ca-Y)alloys as well as Mg-Y and Mg-Gd based alloys.Besides,the shortages and the future focus of theses alloys are also reviewed.The aim of this article is to promote the understanding of oxidation and ignition mechanisms of Mg alloys and to provide reference for the development of Mg alloys with high strength and excellent ignition-proof performance at the same time.
文摘Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately contained a mistake. The presentation of Fig. 11 was incorrect. The correct version is given below:
基金Supported by the Projects for Science and Technology of Jilin Province No.20220402012GHthe Capital Con-struction Fund within the Budget of Jilin Province No.2023C044-2+3 种基金the Major Science and Technology Projects of Jilin Province and Changchun City under Grant No.20220301026GX and 20210301024GXthe key R&D projects of Jilin Province under Grant No.20220201122GXthe National Natural Science Foundation of China under Grant No.U21A20323the high-tech industrialization project of science and tech-nology cooperation between Jilin Province and Chinese Academy of Sci-ences under Grant No.2022SYHZ0038.
文摘Wrought magnesium alloys with high-strength and high-ductility property have been attracting more and more interest in automotive and aerospace industries,and the conventional Mg-Zn based alloys are widely accepted as the representative one.Development of Mg-Zn based alloys with rare earth(RE)element additions and with modified preparation processes domains the evolution of their potential structural applications.Nonetheless,their highest tensile yield strength(TYS)is still in the order of 400 MPa,clearly lower than that of the Mg-RE based alloys,in the order of 500 MPa,much less compared with the high-strength aluminum alloys and titanium alloys.According to many previous investigations,two relatively efficient methods to improve mechanical properties of ZK based alloys were revealed as:alloying by RE and optimizing wrought processes.However,comprehensive combinative investigation was hitherto not conducted to date.Thus,it is imperative in the next work to further improve the yield strength to the order of 500 MPa or much higher,and simultaneously modify the tension-compression strength asymmetry of the ZK series alloys.Maybe,developing novel wrought processes for ZK60(+RE)alloys or exploring appropriate pre-dealing treatments before or after the wrought processes might be an important approach to accomplish a much higher level of balance of high-strength and high-ductility.
文摘Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively poor, which limits their industrial applications. The joints shall be protected against corrosion. In this review, therefore, the current status and development of corrosion protection for FSW high-strength Al alloy joints are presented. Particular emphasis has been given to different protection methods : lowering heat input, post-weld heat treatment, surface modification and spray coatings. Finally, opportunities are identified for further research and development in corrosion protection of FSW high-strength Al alloy joints.
基金the National Natural Science Foundation of China(No.U1703131,No.51674027,No.51974027 and No.52004028)Guangdong Basic and Applied Basic Research Foundation(2019A1515111126)the Fundamental Research Funds for the Central Universities(FRF-TP-18-005C1 and FRF-TP-18-041A1).
文摘The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process.
文摘The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. .
基金Project(QN2010-04)supported by the Youth Startup Fund of the Second Affiliated Hospital of Harbin Medical University,ChinaProject(2010-156)supported by the Medical Scientific Research Foundation of Heilongjiang Province Health Department,ChinaProject(HIT.NSRIF.2012002)supported by the Fundamental Research Funds for the Central Universities,China
文摘To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the effect of Nb addition on the microstructure,mechanical properties and castability of Ti-15 Mo alloy.Phase analysis and microstructure observation show that all the alloys consist of single β phase and the equiaxed β grain is refined with increasing Nb content.These β-type Ti-15Mo-xNb alloys exhibit good plasticity and rather low compression elastic modulus(in the range of 18.388-19.365 GPa).After Nb addition,the compression yield strength of the alloys increases.With increasing Nb content,the micro-hardness of the alloys decreases.The alloys exhibit obvious fibrous strip microstructure after cold compression deformation.The castability test shows that the castability of the alloys after Nb addition decreases and that of the Ti-15 Mo alloy is the highest(92.01%).
基金financially supported by the National Natural Science Foundation of China(Nos.51361010 and 51665012)the Jiangxi Province Science Fund for Distinguished Young Scholars(Nos.20171BCB23061 and 2018ACB21020)
文摘Alloying is a good approach to increasing its strength but leads to a reduction of damping to pure magnesium.Classifying the alloying characteristics of various alloying elements in magnesium alloys and their combined effects on the damping and mechanical properties of magnesium alloys is important.In this paper,the properties of the Mg-0.6wt%X binary alloys were analyzed through strength measurements and dynamic mechanical analysis.The effects of foreign atoms on solid-solution strengthening and dislocation damping were studied comprehensively.The effect of solid solubility on damping capacity can be considered from two perspectives:the effect of single solid-solution atoms on the damping capacities of the alloy,and the effect of solubility on the damping capacities of the alloy.The results provide significant information that is useful in developing high-strength,high-damping magnesium alloys.This study will provide scientific guidance regarding the development of new types of damping magnesium alloys.
基金financially supported by the National Natural Science Foundation of China (No.51474031)
文摘The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transformation model describing the conversion of γ-Fe OOH to α-Fe OOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-Fe OOH into α-Fe OOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products.
基金Project(2019B010943001)supported by Key-area Research and Development Program of Guangdong Province,ChinaProject(2020)supported by the Fund of State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy showed columnarβgrains spreading over multiple layers and paralleling to the building direction.The distinct microstructure of as-fabricated alloy was composed of near-β(more than 98.1%)with a submicron cellular structure.Different SLM processing parameters such as hatch spacing could affect the microstructure of as-fabricated alloy,which could thus further significantly affect the mechanical properties of as-fabricated alloy.In addition,the as-fabricated alloy with the distinct microstructure exhibits yield strength of 818 MPa combined with elongation of more than 19%,which shows that SLM is a potential technology for manufacturing near-beta titanium components.
基金Project(92066205) supported by the National Natural Science Foundation of ChinaProject(JCKY61420052008)supported by the National Defense Science and Technology Key Laboratory Foundation,China+2 种基金Project(311021013)supported by Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),ChinaProject(FRF-MP-20-52) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(075-15-2021-612) support from the Government of the Russian Federation。
文摘The extruded plate of powder metallurgy AA2024 aluminum alloy was successfully solid-state joined by friction stir welding(FSW) to demonstrate potential applications in the aerospace and automotive industries. For determining the optimal processing parameters of FSW, the microstructure, mechanical properties, and fracture behavior of FSW joints were evaluated. When the processing parameters were optimized with 2000 r/min rotation speed and100 mm/min traverse speed, high quality welds were achieved. The ultimate tensile strength yield strength and elongation of the joint can reach 415 MPa(85% of the base metal strength), 282 MPa, and 9.5%, respectively. The hardness of the joint gradually decreased from the alloy matrix to the heat-affected zone. The lowest strength and hardness appeared near the heat-affected zone because of the over-aging caused by heat flow from repeated stirring during FSW. The average grain size of the stir zone(2.15 μm) was smaller than that of the base metal(4.43 μm) and the heat-affected zone(5.03 μm), whose grains had <110> preferred orientation.
文摘Composition and service properties of high - strength low-alloyed steels with 590-980 MPa yield strength,which find an application in Russia, Belorus,Ukraine and other countries of the former USSR in manufacture of welded structures of a powerful mining and transport machinery, are given. Electrodes and wires for main processes of arc welding of these steels have been devel- oped on the basis of a rational use of different systems of alloying (08KhN2GM,08KhNG2M, and also economical systems of type 10G25, ect. ). Main approaches to the technological provess- es of manufacture of structures of high - strength steels are formulated.They are mainly directed to the weakening of de offect of the factors which contribute to a delayed fracture of joints (diffusive hydrogen,unfavourable rates of cooling,level of residual stresses). When there are no stress concentrators (and at a low level of residual stresses) the welded joints of these steels have a good resistance to fatigue and brittle fractures.As a rule, they are prevented with the help of the known approaches.It is shown that in addition to them and due to a proper selection of conditions of welding the life of welded joints of the high - strength steels can be 1. 2 - 1. 4 times in- creased.
文摘The quench transfomation in a Ti-10V-2Fe-3Al near B-titanium alloy was studied by means of X-ray diffraction, transmission electron microscopy, and optical micyoscopy. The quenching temperatures were above and below the β transus temperature. The phase constitutions of specimens quenched from various solution temperatures were identified and the phase morphologies were examined. In addition, the relationship between phase lattice parameters and quenching tempera- tures was given for α, β and α ^(11) phases. This alloy has a tendency of precipitation of athermal ω phase and formation of stress induced α^(11) mar- tensite from β phase during quenching. Quenched from the temperatures above the β transus tem- perature, the alloy mainly consists of β phase, a small amount of α^(11) martensite and athemal ω phase aye also present in the alloy. After quenching from the temperatures below the β transus temperature, the α phase appeays in the alloy in addition to the phases mentioned above.
基金National Science and Technology Project of China(JPPT-135-GH-2-017)Fellowship of China Postdoctoral Science Foundation(2022M720399)。
文摘The effect of die forging on the microstructure evolution and deformation behavior of metastable β-titanium alloy Ti55511 was investigated by electron backscatter diffraction.Before die forging,the alloy Ti55511 was subjected to multi-pass forging to optimize the microstructural heterogeneity(texture)which can cause mechanical behavior anisotropy of titanium alloys.Results show that after die forging,Ti55511 components exhibit different microstructures and textures in different local areas.No<100>fiber texture is found in all areas with different degrees of deformation.Dynamic recrystallization occurs in the area where large strain occurs during the early stage of die forging.Basket-weave microstructure forms in most local areas.