The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel func...The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements.展开更多
Based on the geological condition of Zhangxiaolou deep mine in Xuzhou mining area, under 986 m in depth, 20.6-31.6 MPa in maximum horizontal principal stress, and friable and fractured surrounding rock, test researche...Based on the geological condition of Zhangxiaolou deep mine in Xuzhou mining area, under 986 m in depth, 20.6-31.6 MPa in maximum horizontal principal stress, and friable and fractured surrounding rock, test researches on partial relieving pressure were completed for the entry with U-steel arched yielding support. The relieving pressure parameters, technology process and results of springing blasting by boreholes and excavating pockets in the two sides of entry were introduced. It is demonstrated that springing will not be shaped under the condition of single borehole arrangement after exploded, the arrangement by a group, it will make borehole bottom form springing in 0.6-0.8 m in diameter, that convergence of two sides and roof to floor have some increments by using springing blasting for reliving pressure. This kind of method for reliving pressure is not suitable to use in the deep mine, and that the convergence of two sides obviously declined by excavating pocket in two sides, it can be still used in the entry with metal support, while maintenance of entry in deep mines is difficult, and can not be supported by bolt or bolt with wire mesh.展开更多
The fault is potentially vulnerability's geological structure in the working face and its vicinity,and it is also a crucial geological factor affecting coal mine safety exploitation.To investigate the unstable fai...The fault is potentially vulnerability's geological structure in the working face and its vicinity,and it is also a crucial geological factor affecting coal mine safety exploitation.To investigate the unstable failure of surrounding rock induced by fault activation under the influence of adoption,which was studied utilizing field case and numerical analysis for the deformation and failure process of surrounding rock near the fault-affected zone.Combined with field cases,this paper analyzes disturbance stress and roof abscission layer monitoring in effecting zones of fault activation.Using the discrete element 3DEC numerical analysis method,the model of surrounding rock unstable fracture induced by fault activation under adoption is established.The unstable fracture and stress variation characteristics of surrounding rock induced by fault activation during the excavation of the upper side wall and lower side wall of the faults are simulated and analyzed.Field analysis shows that as the coal working face continues to advance,the mining stress gradually increases.There is a zigzag wave on the relationship curve between coal mining and roof displacement near the fault,which reveals that the surrounding rock of the fault activation affected zone is in the superposition state of static load and dynamic load.Furthermore,the simulation results show that the stress and displacement of surrounding rock near the fault increase with the advance of coal mining face.The closer to the fault plane,the displacement gradually returns to zero,and the stress is also in a lower state.展开更多
The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking un...The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12302264,52104004,12072170,and 12202225)the Natural Science Foundation of Shandong Province(No.ZR2021QA042)Special Fund for Taishan Scholar Project(No.Tsqn202211180).
文摘The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements.
基金Supported by the Key Project of the National Natural Science Foundation (50490273)
文摘Based on the geological condition of Zhangxiaolou deep mine in Xuzhou mining area, under 986 m in depth, 20.6-31.6 MPa in maximum horizontal principal stress, and friable and fractured surrounding rock, test researches on partial relieving pressure were completed for the entry with U-steel arched yielding support. The relieving pressure parameters, technology process and results of springing blasting by boreholes and excavating pockets in the two sides of entry were introduced. It is demonstrated that springing will not be shaped under the condition of single borehole arrangement after exploded, the arrangement by a group, it will make borehole bottom form springing in 0.6-0.8 m in diameter, that convergence of two sides and roof to floor have some increments by using springing blasting for reliving pressure. This kind of method for reliving pressure is not suitable to use in the deep mine, and that the convergence of two sides obviously declined by excavating pocket in two sides, it can be still used in the entry with metal support, while maintenance of entry in deep mines is difficult, and can not be supported by bolt or bolt with wire mesh.
基金supported by the National key Research and development program for young scientists(2021YF2900400)Supported by Youth Foundation of National Natural Science Foundation of China(52104077)Major collaborative innovation project of Guizhou's mineral prospecting breakthrough strategic action[2022]ZD001-02-02,which are all gratefully appreciated.
文摘The fault is potentially vulnerability's geological structure in the working face and its vicinity,and it is also a crucial geological factor affecting coal mine safety exploitation.To investigate the unstable failure of surrounding rock induced by fault activation under the influence of adoption,which was studied utilizing field case and numerical analysis for the deformation and failure process of surrounding rock near the fault-affected zone.Combined with field cases,this paper analyzes disturbance stress and roof abscission layer monitoring in effecting zones of fault activation.Using the discrete element 3DEC numerical analysis method,the model of surrounding rock unstable fracture induced by fault activation under adoption is established.The unstable fracture and stress variation characteristics of surrounding rock induced by fault activation during the excavation of the upper side wall and lower side wall of the faults are simulated and analyzed.Field analysis shows that as the coal working face continues to advance,the mining stress gradually increases.There is a zigzag wave on the relationship curve between coal mining and roof displacement near the fault,which reveals that the surrounding rock of the fault activation affected zone is in the superposition state of static load and dynamic load.Furthermore,the simulation results show that the stress and displacement of surrounding rock near the fault increase with the advance of coal mining face.The closer to the fault plane,the displacement gradually returns to zero,and the stress is also in a lower state.
基金financial support provided by the Xinjiang Uygur Autonomous Region Key R&D Project Task Special-Department and Department Linkage Project(No.2022B01051)Major Project of Regional Joint Foundation of China(No.U21A20107)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2024JJ4021)the Xinjiang Uygur Autonomous Region Tianchi Introduction Plan(No.2024XGYTCYC03)。
文摘The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.