A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of ...A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.展开更多
Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean...Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean gas products such as hydrogen. Some entrained flow gasifiers operate with Heavy Fuel Oil(HFO) feedstock. In this application, HFO atomization is very important in determining the performance and efficiency of the gasifiers.The atomization characteristics of HFO(Mazut) discharging from a pressure-swirl atomizer(PSA) are studied for different pressures difference(Δp) and temperatures in the atmospheric ambient. The investigated parameters include atomizer mass flow rate( _m), discharge coefficient(CD), spray cone angle(θ), breakup length(Lb), the unstable wavelength of undulations on the liquid sheet(λs), global and local SMD(sauter mean diameter) and size distribution of droplets. The characteristics of Mazut sheet breakup are deduced from the shadowgraph technique. The experiments on Mazut film breakup were compared with the predictions obtained from the liquid film breakup model. Validity of the theory for predicting maximum unstable wavelength was investigated for HFO(as a highly viscous liquid). A modification on the formulation of maximum unstable wavelength was presented for HFO. SMD decreases by getting far from the atomizer. The measurement for SMD and θ were compared with the available correlations. The comparisons of the available correlations with the measurements of SMD andθ show a good agreement for Ballester and Varde correlations, respectively. The results show that the experimental sizing data could be presented by Rosin-Rammler distributions very well at different pressure difference and temperatures.展开更多
This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such as unit root test, co-integration test, error correction model, Granger causality test, impulse-response fimct...This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such as unit root test, co-integration test, error correction model, Granger causality test, impulse-response fimction and variance decomposition. The results showed that there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the futures price of Shanghai fuel oil futures market. In addition, the Shanghai fuel oil futures market exhibits a highly effective price discovery function.展开更多
This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar...This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar mixtures were made with Portland cement type I containing 0-40wt% FA and POA. FA and POA with 1wt%-3wt% retained on a sieve No.325 were used. The compressive strength and rapid chloride penetration depth of mortars were determined. The results reveal that the use of ternary blended cements produces good strength mortars. The use of the blend of FA and POA also produces high strength mortars and excellent resistance to chloride penetration owing to the synergic effect of FA and POA. A mathematical analysis and two-parameter polynomial model were presented to predict the compressive strength. The mathematical model correlated well with the experimental results. The computer 3-D graphics of strength of the ternary blended mortars were also constructed and could be used to aid the understanding and the proportioning of the blended system.展开更多
High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 i...High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 is characterized by high resins(40%-71%)and sulfur(2%-4%),and low wax (l%-6%),with n-alkanes removed by biodegradation,whereas family 2 is characterized by extremely abundant sulfur(3%-10%),and high asphaltenes(7%-31%)and wax(2%-19%),with no evidence of microbial attack.The oils of family 1 are distributed in the reservoir,lower than 1500 m throughout the sub-basin.Biomarker assemblages,such as low pristane/phytane ratios(1 Pr/Ph)and a high abundance of carotane,gammacerane,and dinosterane,suggest that they are derived from the calcareous mudstones and shales among the stratified,saline Es_4~u unit,in addition to the in situ biodegradation-concentrated sulfur content.However,the oils of family 2 are identified only in the western Zhanhua and eastern Chezhen depressions,with a depth deeper than 1700 m.Physical properties,together with biomarker ratios,including even-numbered n-alkanes,1 Pr/Ph,trace diasteranes,higher C35 homohopanes,and abundant dibenzothiophene series,with1 dibenzothiophene/phenanthrene,indicate an origin from carbonate source rocks.The X-ray diffraction analysis showed that the carbonate source rock is limited in the Es_4~u unit of the Bonan sag,which is different from most other source rocks in the same horizon.It is suggested that the high-sulfur,heavy oils are generated at the early stage of the oil window.Bacterial sulfate reduction might be responsible for the occurrence of sulfur species in the high-sulfur,heavy oils,while heavy biodegradation will enhance sulfur concentrations.展开更多
Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their h...Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their high-cost and potential secondary pollution.In this work,we employed graphene analogous hexagonal boron nitride(h-BN)as a metal-free catalyst for ODS with hydrogen peroxide(H2O2)as the oxidant.The h-BN catalyst was characterized and proved to be a few-layered structure with relatively high specific surface areas.The h-BN catalyst showed a 99.4%of sulfur removal in fuel oil under the optimized reaction conditions.Besides,the h-BN can be recycled for 8 times without significant decrease in the catalytic performance.Detailed mechanism analysis found that it is the boron radicals in h-BN activated H2O2 to generate·OH species,which can readily oxidize sulfides to corresponding sulfones for separation.This work would provide another choice in choosing metal-free catalysts for ODS.展开更多
Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel...Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.展开更多
This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pol...This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pollutant and marine medaka (Oryzias melastigma) embryos as the experimental organism. The developmental toxicity of different volume concentrations (0.05%, 0.2%, 1% and 5%) of water-accommodated fractions, biologically-enhanced water-accommodated fractions, and chemically-enhanced water-accommodated fractions on the embryos in different exposure time (8, 15 and 22 d) were compared and the content of relevant polycyclic aromatic hydrocarbons (PAHs) was studied (in dispersion and in vivo). The subacute toxic effects were assessed in terms of antioxidant activities of enzymes (superoxide dismutase, catalase and glutathione S-transferase) and the blue sac disease (BSD) indexes.The results showed that the BSD indexes of the treatment groups were significantly higher than the respective control groups and showed positive correlations with both concentration and exposure time. The experiments with three antioxidant enzymes indicated that enzymatic activities of the embryos changed dramatically under the oxidation stress of petroleum hydrocarbons, especially after adding the dispersants. With the increase of petroleum hydrocarbon concentration and exposure time, the three enzymes showed different degrees of induction and inhibition effects.展开更多
It is known that increasing the injection pressure reduces the breakup length and the droplet size.Adding pulses,on the other hand,helps to atomize the liquid into finer droplets,similar to airassisted injectors but w...It is known that increasing the injection pressure reduces the breakup length and the droplet size.Adding pulses,on the other hand,helps to atomize the liquid into finer droplets,similar to airassisted injectors but without altering the airtofuel concentration.To further reduce the droplet size and breakup length,a novel injector type,called''Pulsed PressureSwirl"(PPS),is introduced in this work,which is a combination of pressureswirl and ultrasonic pulsed injectors.A pressureswirl atomizer was designed and fabricated specifically for Mazut HFO(Heavy Fuel Oil).The droplet formation process and droplet size distribution have been studied experimentally(by shadowgraphy high speed imaging)and numerically(with the opensource VolumeofFluid code Gerris).Changing liquid injection pressure effect on the spray angle and film thickness has been quantified.These simulations have been used to study the primary breakup process and quantify the droplet size distributions,using different injection pulse frequencies and pressures.The numerical results have revealed that the new injector concept successfully produces finer droplets and results in a decrease in the breakup length,especially when applying high pulse frequencies,with no significant changes in the spray angle.展开更多
Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of tran...Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.展开更多
This paper presents the experimental results of composition changes of heavy fuel oil by stmulating weathering in static seawater under natural environmental conditions. The results indicate: n-C10 to n-C15 were lost...This paper presents the experimental results of composition changes of heavy fuel oil by stmulating weathering in static seawater under natural environmental conditions. The results indicate: n-C10 to n-C15 were lost gradually in 24 weeks and the relative abundance of alkanes with long chains (〉n-C19) increased markedly. The aromatic compounds with less than two tings (except C4N) were completely lost in 24 weeks and CnP and CnD became the main aromatics in the heavy fuel oil after 24 weeks. The ratios of n- C1/Pristane (Pr) and n-C18 Phytane (Ph) were suitable for identifying lightly weathered (3 weeks) heavy fuel oil. The ratios of n-ClT/n-C18 and Pr/Ph were suitable for identifying moderately weathered heavy fuel oil (12 weeks); the ratios of C2D/C2P and C3D/C3P did not change significantly in 24 weeks and were more suitable for identifying moderately weathered heavy fuel oil (24 weeks).展开更多
Vehicle fuel economy will continue to increase in importance as world vehicle production grows and fuel supplies become more limited year by year.As OEMs strive to produce cars and trucks with greater fuel efficiency ...Vehicle fuel economy will continue to increase in importance as world vehicle production grows and fuel supplies become more limited year by year.As OEMs strive to produce cars and trucks with greater fuel efficiency and extended durability,additive technology developers are increasingly being asked to contribute to these goals from the lubricant side.Axle inefficiency can account for as much as 10% of the overall losses in an automotive driveline so improvements in axle efficiency can contribute greatly to improving vehicle fuel economy.For good durability,low axle oil operating temperatures are also needed to minimize oxidative and thermal degradation of the oil,reduce deposits and sludge formation,and extend oil drain intervals.To develop gear oils that can increase axle efficiency significantly while maintaining stable operating temperatures requires rig tests that are fast,precise and reproducible.This paper documents the development of a new axle test rig and test procedures and presents test results on several gear oils.The test results show the contributions of base oil viscosity,base oil chemistry,and additive chemistry on the fuel economy and temperature of the various oils.Having a dependable tool is enabling the development of new fuel-efficient and durable gear oil technology.展开更多
A method of synchronous-high-derivative spectfluor for identification of crude oil and fuel oil pollution is studied. The best operation conditions for the 2nd and 4th deriv, are set. To differentiate oil-spill at riv...A method of synchronous-high-derivative spectfluor for identification of crude oil and fuel oil pollution is studied. The best operation conditions for the 2nd and 4th deriv, are set. To differentiate oil-spill at river and sea, this method is rapid and simple, and the spectra have high resolution power as 'fingerprint'.展开更多
Biodiesels produced from various feedstocks have been considered as alternative fuels used in internal combustion engines without major modifications.This research focuses on producing biodiesel from waste cooking oil...Biodiesels produced from various feedstocks have been considered as alternative fuels used in internal combustion engines without major modifications.This research focuses on producing biodiesel from waste cooking oil(WCOSD)by the catalytic cracking method using MgO as the catalyst and comparing the engine operating characteristics of the test engine when using WCOSD and traditional diesel(CD)as test fuels.As a result,the brake power of the test engine fueled WCOSD,and traditional diesel is similar.However,the engine fuel consumption in the case of using WCOSD is slight increases in some operating conditions.Also,the nitrogen oxides emissions of the test engine fueled WCOSD are higher than those of CD at all tested conditions.The trend is opposite for hydrocarbon emission as the HC emission of the engine fueled by WCOSD reduces 26.3%on average.The smoke emission of the test engine in case of using WCOSD is lower 17%on average than that of CD.However,the carbon monoxide emissions are lower at the low and medium loads and higher at the full loads.These results show that the new biodiesel has the same characteristics as those of commercial biodiesel and can be used as fuel for diesel engines.展开更多
This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized...This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized by X-ray diffraction (XRD) analysis. Batch adsorption study revealed that the optimum conditions for the removal were as follows: pH 2, adsorbent dosage 80 g/L and contact time of 6 min, which resulted in 92% removal and 0.464 mg/g maximum adsorption capacity. Adsorption isotherm and kinetic studies showed that Freundlich isotherm and pseudo-second-order kinetic models fitted best to the experimental data. Column adsorption study at 5 mL/min of flow rate showed that 90% removal was obtained at 2 min of contact time which represented its breakthrough point. The column reached saturation at 30 min and the maximum column adsorption capacity recorded was 0.412 mg/g. The column adsorption behavior showed good fit with both Thomas and Yoon-Nelson kinetic models. These findings suggested that the utilization of POFA as a low-cost adsorbent to remove Cr(VI) from wastewater, either in batch or fixed bed adsorption system is not only effective, but concurrently will help to reduce wastes from the palm oil industry.展开更多
In the present study, safflower biodiesel (safflower oil methyl ester) was produced through transesterification. Biodiesel fuel obtained from safflower was blended with diesel fuel in ratios of 2% (B2) and 20% (...In the present study, safflower biodiesel (safflower oil methyl ester) was produced through transesterification. Biodiesel fuel obtained from safflower was blended with diesel fuel in ratios of 2% (B2) and 20% (B20). Kinematic viscosity, density, water content, heating value, flash point, clouding point, pour point, ash content, copper strip corrosion and CFPP (cold filter plug point) tests were performed on B2, B20, B100 fuel blends and diesel fuel. A four stroke, single cylinder, water cooled diesel engine with a direct injection fuel system was operated with B2, B20, B100 and diesel fuels at partial load for 100 hours and samples were taken from the engine lubricating oil at certain hours. The wear elements iron, aluminum, lead, copper and chromium contents of the samples taken from the engine lubricating oil were examined.展开更多
This study investigates the influence of using ground palm oil fuel ash(G-POFA) from 10%-30% as cement replacement(by weight) on the cement mortar's pH under various curing conditions. These findings were suppleme...This study investigates the influence of using ground palm oil fuel ash(G-POFA) from 10%-30% as cement replacement(by weight) on the cement mortar's pH under various curing conditions. These findings were supplemented by thermal gravimetric analysis(TGA). Moreover, the resistance of G-POFA blended cement mortars to water absorption and sorptivity was determined. Further, the k-value test was carried out to explain the pozzolanic and filler behavior of G-POFA and to support the results obtained from TGA. It was found that there was no significant impact of several curing conditions on the pH of mortars. The mortar with 10% G-POFA in replacement of cement(G-POFA-10) exhibited the best resistance against water absorption and sorptivity.展开更多
The conversion of waste frying oil into a valuable methyl ester (biodiesel) has been successfully conducted and also the acid pre-treatment process was carried out prior to the main biodiesel production process for lo...The conversion of waste frying oil into a valuable methyl ester (biodiesel) has been successfully conducted and also the acid pre-treatment process was carried out prior to the main biodiesel production process for lowering waste frying oil free fatty acid (FFA) content below 1%. The physicochemical properties of biodiesel were analyzed to ensure the product could meet the standards of fuel properties. The methanolysis was selected as the biodiesel production technique under various mixing speeds namely 350, 400 and 450 rpm, while the other parameters are maintained at the optimum process conditions such as methanol to oil molar ratio is 6:1, percentage of catalyst loading is 1.0% wt, reaction temperature is 60℃, and reaction time is 50 min. Also, the investigation on the kinematic viscosity, density and flash point of biodiesel was performed against a number of rpm. The standards of ASTM D 6751 were applied to measure the entire prescribed properties of biodiesel. The highest yield of biodiesel obtained was 99%. The values of flash point, kinematic viscosity and density were in the range of specified limitations. Other biodiesel properties fulfilled the diesel engine application requirements.展开更多
The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil fe...The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil feedstocks that could be exploited to produce fuel oil, called biodiesel with the aid of biotechnology. Initially, the biodiesel produced from vegetable oil did not attract much attention because of its high cost. However, the recent increase in petroleum prices and the uncertainties of petroleum availability led to the renewal of interest in biodiesel production from such sustainable resources (i.e., vegetable oil feedstocks). This research focuses on the production of biodiesel from plant resources, and further investigates the influences of key process parameters, such as the molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction period and stirring speed on the biodiesel yield. This investigation is to determine the optimum process parameters for maximum biodiesel yield. The biodiesel was produced from three vegetable oil feedstocks, namely palm, soybean and sunflower oil via a transesterification process. It was observed that all the process parameters significantly influenced the biodiesel yield. The maximum biodiesel yields for palm, sunflower and soybean oil feedstocks were found to be 87.5%, 83.6% and 80.2%, respectively at optimum condition. The results suggest that through proper optimization of the process parameters the biodiesel yields could be maximized. In conclusion, the production of biodiesel from plant resources would be regarded as a sustainable solution to the ever increasing demand of fuel oils.展开更多
This work examines the effect of fuel temperature in the gas emissions that is used in a four-stroke diesel engine under maximum constant fuel consumption. The fuel temperatures that were used are 20 ℃, 30 ℃, 40 ℃,...This work examines the effect of fuel temperature in the gas emissions that is used in a four-stroke diesel engine under maximum constant fuel consumption. The fuel temperatures that were used are 20 ℃, 30 ℃, 40 ℃, 50 ℃, 60 ℃, 70℃ and 80 ℃. The engine was functioned under full load condition when it was using different mixtures of diesel-palm oil as fuel. For those fuel temperatures and for any mixture of fuel the gas emissions of carbon monoxide (CO), hydrocarbons (HC), nitrogen monoxide (NO) and rotate speed of engine are examined.展开更多
文摘A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.
文摘Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean gas products such as hydrogen. Some entrained flow gasifiers operate with Heavy Fuel Oil(HFO) feedstock. In this application, HFO atomization is very important in determining the performance and efficiency of the gasifiers.The atomization characteristics of HFO(Mazut) discharging from a pressure-swirl atomizer(PSA) are studied for different pressures difference(Δp) and temperatures in the atmospheric ambient. The investigated parameters include atomizer mass flow rate( _m), discharge coefficient(CD), spray cone angle(θ), breakup length(Lb), the unstable wavelength of undulations on the liquid sheet(λs), global and local SMD(sauter mean diameter) and size distribution of droplets. The characteristics of Mazut sheet breakup are deduced from the shadowgraph technique. The experiments on Mazut film breakup were compared with the predictions obtained from the liquid film breakup model. Validity of the theory for predicting maximum unstable wavelength was investigated for HFO(as a highly viscous liquid). A modification on the formulation of maximum unstable wavelength was presented for HFO. SMD decreases by getting far from the atomizer. The measurement for SMD and θ were compared with the available correlations. The comparisons of the available correlations with the measurements of SMD andθ show a good agreement for Ballester and Varde correlations, respectively. The results show that the experimental sizing data could be presented by Rosin-Rammler distributions very well at different pressure difference and temperatures.
文摘This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such as unit root test, co-integration test, error correction model, Granger causality test, impulse-response fimction and variance decomposition. The results showed that there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the futures price of Shanghai fuel oil futures market. In addition, the Shanghai fuel oil futures market exhibits a highly effective price discovery function.
文摘This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar mixtures were made with Portland cement type I containing 0-40wt% FA and POA. FA and POA with 1wt%-3wt% retained on a sieve No.325 were used. The compressive strength and rapid chloride penetration depth of mortars were determined. The results reveal that the use of ternary blended cements produces good strength mortars. The use of the blend of FA and POA also produces high strength mortars and excellent resistance to chloride penetration owing to the synergic effect of FA and POA. A mathematical analysis and two-parameter polynomial model were presented to predict the compressive strength. The mathematical model correlated well with the experimental results. The computer 3-D graphics of strength of the ternary blended mortars were also constructed and could be used to aid the understanding and the proportioning of the blended system.
基金Funds to support this research were provided by the National Science Foundation of China(no. 40703011)
文摘High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 is characterized by high resins(40%-71%)and sulfur(2%-4%),and low wax (l%-6%),with n-alkanes removed by biodegradation,whereas family 2 is characterized by extremely abundant sulfur(3%-10%),and high asphaltenes(7%-31%)and wax(2%-19%),with no evidence of microbial attack.The oils of family 1 are distributed in the reservoir,lower than 1500 m throughout the sub-basin.Biomarker assemblages,such as low pristane/phytane ratios(1 Pr/Ph)and a high abundance of carotane,gammacerane,and dinosterane,suggest that they are derived from the calcareous mudstones and shales among the stratified,saline Es_4~u unit,in addition to the in situ biodegradation-concentrated sulfur content.However,the oils of family 2 are identified only in the western Zhanhua and eastern Chezhen depressions,with a depth deeper than 1700 m.Physical properties,together with biomarker ratios,including even-numbered n-alkanes,1 Pr/Ph,trace diasteranes,higher C35 homohopanes,and abundant dibenzothiophene series,with1 dibenzothiophene/phenanthrene,indicate an origin from carbonate source rocks.The X-ray diffraction analysis showed that the carbonate source rock is limited in the Es_4~u unit of the Bonan sag,which is different from most other source rocks in the same horizon.It is suggested that the high-sulfur,heavy oils are generated at the early stage of the oil window.Bacterial sulfate reduction might be responsible for the occurrence of sulfur species in the high-sulfur,heavy oils,while heavy biodegradation will enhance sulfur concentrations.
基金All authors appreciate the financial support from the National Key R&D Program of China(2017YFB0306504)the National Natural Science Foundation of China(No.21722604,21878133 and 21908082)+2 种基金China Postdoctoral Science Foundation(No.2019M651743)Natural Science Foundation of Jiangsu Province(BK20190852,BK20190854)Natural Science Foundation for Jiangsu Colleges and Universities(19KJB530005).
文摘Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their high-cost and potential secondary pollution.In this work,we employed graphene analogous hexagonal boron nitride(h-BN)as a metal-free catalyst for ODS with hydrogen peroxide(H2O2)as the oxidant.The h-BN catalyst was characterized and proved to be a few-layered structure with relatively high specific surface areas.The h-BN catalyst showed a 99.4%of sulfur removal in fuel oil under the optimized reaction conditions.Besides,the h-BN can be recycled for 8 times without significant decrease in the catalytic performance.Detailed mechanism analysis found that it is the boron radicals in h-BN activated H2O2 to generate·OH species,which can readily oxidize sulfides to corresponding sulfones for separation.This work would provide another choice in choosing metal-free catalysts for ODS.
基金supported by the National Key Research and Development Program(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.
基金The National Natural Science Foundation of China under contract No.41276105/D0608
文摘This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pollutant and marine medaka (Oryzias melastigma) embryos as the experimental organism. The developmental toxicity of different volume concentrations (0.05%, 0.2%, 1% and 5%) of water-accommodated fractions, biologically-enhanced water-accommodated fractions, and chemically-enhanced water-accommodated fractions on the embryos in different exposure time (8, 15 and 22 d) were compared and the content of relevant polycyclic aromatic hydrocarbons (PAHs) was studied (in dispersion and in vivo). The subacute toxic effects were assessed in terms of antioxidant activities of enzymes (superoxide dismutase, catalase and glutathione S-transferase) and the blue sac disease (BSD) indexes.The results showed that the BSD indexes of the treatment groups were significantly higher than the respective control groups and showed positive correlations with both concentration and exposure time. The experiments with three antioxidant enzymes indicated that enzymatic activities of the embryos changed dramatically under the oxidation stress of petroleum hydrocarbons, especially after adding the dispersants. With the increase of petroleum hydrocarbon concentration and exposure time, the three enzymes showed different degrees of induction and inhibition effects.
文摘It is known that increasing the injection pressure reduces the breakup length and the droplet size.Adding pulses,on the other hand,helps to atomize the liquid into finer droplets,similar to airassisted injectors but without altering the airtofuel concentration.To further reduce the droplet size and breakup length,a novel injector type,called''Pulsed PressureSwirl"(PPS),is introduced in this work,which is a combination of pressureswirl and ultrasonic pulsed injectors.A pressureswirl atomizer was designed and fabricated specifically for Mazut HFO(Heavy Fuel Oil).The droplet formation process and droplet size distribution have been studied experimentally(by shadowgraphy high speed imaging)and numerically(with the opensource VolumeofFluid code Gerris).Changing liquid injection pressure effect on the spray angle and film thickness has been quantified.These simulations have been used to study the primary breakup process and quantify the droplet size distributions,using different injection pulse frequencies and pressures.The numerical results have revealed that the new injector concept successfully produces finer droplets and results in a decrease in the breakup length,especially when applying high pulse frequencies,with no significant changes in the spray angle.
文摘Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.
文摘This paper presents the experimental results of composition changes of heavy fuel oil by stmulating weathering in static seawater under natural environmental conditions. The results indicate: n-C10 to n-C15 were lost gradually in 24 weeks and the relative abundance of alkanes with long chains (〉n-C19) increased markedly. The aromatic compounds with less than two tings (except C4N) were completely lost in 24 weeks and CnP and CnD became the main aromatics in the heavy fuel oil after 24 weeks. The ratios of n- C1/Pristane (Pr) and n-C18 Phytane (Ph) were suitable for identifying lightly weathered (3 weeks) heavy fuel oil. The ratios of n-ClT/n-C18 and Pr/Ph were suitable for identifying moderately weathered heavy fuel oil (12 weeks); the ratios of C2D/C2P and C3D/C3P did not change significantly in 24 weeks and were more suitable for identifying moderately weathered heavy fuel oil (24 weeks).
文摘Vehicle fuel economy will continue to increase in importance as world vehicle production grows and fuel supplies become more limited year by year.As OEMs strive to produce cars and trucks with greater fuel efficiency and extended durability,additive technology developers are increasingly being asked to contribute to these goals from the lubricant side.Axle inefficiency can account for as much as 10% of the overall losses in an automotive driveline so improvements in axle efficiency can contribute greatly to improving vehicle fuel economy.For good durability,low axle oil operating temperatures are also needed to minimize oxidative and thermal degradation of the oil,reduce deposits and sludge formation,and extend oil drain intervals.To develop gear oils that can increase axle efficiency significantly while maintaining stable operating temperatures requires rig tests that are fast,precise and reproducible.This paper documents the development of a new axle test rig and test procedures and presents test results on several gear oils.The test results show the contributions of base oil viscosity,base oil chemistry,and additive chemistry on the fuel economy and temperature of the various oils.Having a dependable tool is enabling the development of new fuel-efficient and durable gear oil technology.
文摘A method of synchronous-high-derivative spectfluor for identification of crude oil and fuel oil pollution is studied. The best operation conditions for the 2nd and 4th deriv, are set. To differentiate oil-spill at river and sea, this method is rapid and simple, and the spectra have high resolution power as 'fingerprint'.
文摘Biodiesels produced from various feedstocks have been considered as alternative fuels used in internal combustion engines without major modifications.This research focuses on producing biodiesel from waste cooking oil(WCOSD)by the catalytic cracking method using MgO as the catalyst and comparing the engine operating characteristics of the test engine when using WCOSD and traditional diesel(CD)as test fuels.As a result,the brake power of the test engine fueled WCOSD,and traditional diesel is similar.However,the engine fuel consumption in the case of using WCOSD is slight increases in some operating conditions.Also,the nitrogen oxides emissions of the test engine fueled WCOSD are higher than those of CD at all tested conditions.The trend is opposite for hydrocarbon emission as the HC emission of the engine fueled by WCOSD reduces 26.3%on average.The smoke emission of the test engine in case of using WCOSD is lower 17%on average than that of CD.However,the carbon monoxide emissions are lower at the low and medium loads and higher at the full loads.These results show that the new biodiesel has the same characteristics as those of commercial biodiesel and can be used as fuel for diesel engines.
文摘This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized by X-ray diffraction (XRD) analysis. Batch adsorption study revealed that the optimum conditions for the removal were as follows: pH 2, adsorbent dosage 80 g/L and contact time of 6 min, which resulted in 92% removal and 0.464 mg/g maximum adsorption capacity. Adsorption isotherm and kinetic studies showed that Freundlich isotherm and pseudo-second-order kinetic models fitted best to the experimental data. Column adsorption study at 5 mL/min of flow rate showed that 90% removal was obtained at 2 min of contact time which represented its breakthrough point. The column reached saturation at 30 min and the maximum column adsorption capacity recorded was 0.412 mg/g. The column adsorption behavior showed good fit with both Thomas and Yoon-Nelson kinetic models. These findings suggested that the utilization of POFA as a low-cost adsorbent to remove Cr(VI) from wastewater, either in batch or fixed bed adsorption system is not only effective, but concurrently will help to reduce wastes from the palm oil industry.
文摘In the present study, safflower biodiesel (safflower oil methyl ester) was produced through transesterification. Biodiesel fuel obtained from safflower was blended with diesel fuel in ratios of 2% (B2) and 20% (B20). Kinematic viscosity, density, water content, heating value, flash point, clouding point, pour point, ash content, copper strip corrosion and CFPP (cold filter plug point) tests were performed on B2, B20, B100 fuel blends and diesel fuel. A four stroke, single cylinder, water cooled diesel engine with a direct injection fuel system was operated with B2, B20, B100 and diesel fuels at partial load for 100 hours and samples were taken from the engine lubricating oil at certain hours. The wear elements iron, aluminum, lead, copper and chromium contents of the samples taken from the engine lubricating oil were examined.
文摘This study investigates the influence of using ground palm oil fuel ash(G-POFA) from 10%-30% as cement replacement(by weight) on the cement mortar's pH under various curing conditions. These findings were supplemented by thermal gravimetric analysis(TGA). Moreover, the resistance of G-POFA blended cement mortars to water absorption and sorptivity was determined. Further, the k-value test was carried out to explain the pozzolanic and filler behavior of G-POFA and to support the results obtained from TGA. It was found that there was no significant impact of several curing conditions on the pH of mortars. The mortar with 10% G-POFA in replacement of cement(G-POFA-10) exhibited the best resistance against water absorption and sorptivity.
文摘The conversion of waste frying oil into a valuable methyl ester (biodiesel) has been successfully conducted and also the acid pre-treatment process was carried out prior to the main biodiesel production process for lowering waste frying oil free fatty acid (FFA) content below 1%. The physicochemical properties of biodiesel were analyzed to ensure the product could meet the standards of fuel properties. The methanolysis was selected as the biodiesel production technique under various mixing speeds namely 350, 400 and 450 rpm, while the other parameters are maintained at the optimum process conditions such as methanol to oil molar ratio is 6:1, percentage of catalyst loading is 1.0% wt, reaction temperature is 60℃, and reaction time is 50 min. Also, the investigation on the kinematic viscosity, density and flash point of biodiesel was performed against a number of rpm. The standards of ASTM D 6751 were applied to measure the entire prescribed properties of biodiesel. The highest yield of biodiesel obtained was 99%. The values of flash point, kinematic viscosity and density were in the range of specified limitations. Other biodiesel properties fulfilled the diesel engine application requirements.
文摘The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil feedstocks that could be exploited to produce fuel oil, called biodiesel with the aid of biotechnology. Initially, the biodiesel produced from vegetable oil did not attract much attention because of its high cost. However, the recent increase in petroleum prices and the uncertainties of petroleum availability led to the renewal of interest in biodiesel production from such sustainable resources (i.e., vegetable oil feedstocks). This research focuses on the production of biodiesel from plant resources, and further investigates the influences of key process parameters, such as the molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction period and stirring speed on the biodiesel yield. This investigation is to determine the optimum process parameters for maximum biodiesel yield. The biodiesel was produced from three vegetable oil feedstocks, namely palm, soybean and sunflower oil via a transesterification process. It was observed that all the process parameters significantly influenced the biodiesel yield. The maximum biodiesel yields for palm, sunflower and soybean oil feedstocks were found to be 87.5%, 83.6% and 80.2%, respectively at optimum condition. The results suggest that through proper optimization of the process parameters the biodiesel yields could be maximized. In conclusion, the production of biodiesel from plant resources would be regarded as a sustainable solution to the ever increasing demand of fuel oils.
文摘This work examines the effect of fuel temperature in the gas emissions that is used in a four-stroke diesel engine under maximum constant fuel consumption. The fuel temperatures that were used are 20 ℃, 30 ℃, 40 ℃, 50 ℃, 60 ℃, 70℃ and 80 ℃. The engine was functioned under full load condition when it was using different mixtures of diesel-palm oil as fuel. For those fuel temperatures and for any mixture of fuel the gas emissions of carbon monoxide (CO), hydrocarbons (HC), nitrogen monoxide (NO) and rotate speed of engine are examined.