High-sulfur petroleum coke(HSPC),that is a by-product from slag oil in the coking process of refning,shows versatility values in practical applications and,however,concentrates the majority of organic sulfur.Herein,we...High-sulfur petroleum coke(HSPC),that is a by-product from slag oil in the coking process of refning,shows versatility values in practical applications and,however,concentrates the majority of organic sulfur.Herein,we design and construct a highly efective CTAB@HPA composites to be explored for the catalytic oxidative desulfurization of HSPC under mild conditions using hydrogen peroxide as the oxidant and 1-butyl-3-methylimidazole tetrafuoroborate ionic liquid as the extractant.The results demonstrate that the sulfur content of HSPC could be strikingly reduced from 4.46 wt%to 2.48 wt%under 60℃ and atmospheric pressure,and that the organic sulfur in HSPC is mainly oxidized to sulfoxide,sulfone and sulfate,which latter can be directly separated from petroleum coke.Moreover,the efect of reaction conditions on the desulfurization performance of HSPC as well as the catalytic oxidation reaction kinetic of HSPC desulfurization was systematically investigated.Furthermore,a mechanism for the oxidative desulfurization of HSPC over CTAB@HPA catalysts was proposed.Therefore,this work provides new insight into how to construct active catalysts for the desulfurization of HSPC under mild conditions.展开更多
Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumin...Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumina digestion properties are significantly improved after suspension roasting.Under optimal conditions(t=70 min,T=280°C,w(CaO)=8%and Nk=245 g/L),the digestion ratios are 94.45%and 92.08%for the suspension-roasted and muffle-roasted ore,respectively,and the apparent activation energies are 63.26 and 64.24 kJ/mol,respectively.Two crystal models were established by Materials Studio based on the XRD patterns.The DFT simulation shows that the existing Al—O bands after suspension roasting can improve alumina digestion.The(104)and(113)planes of Al2O3 after suspension roasting are found to combine with NaOH more easily than those of Al2O3 treated in a muffle furnace.展开更多
The utilization of high-sulfur coal is becoming more urgent due to the excessive utilization of low-sulfur,high-quality coal resources,and sulfur removal from high-sulfur coal is the most important issue.This paper re...The utilization of high-sulfur coal is becoming more urgent due to the excessive utilization of low-sulfur,high-quality coal resources,and sulfur removal from high-sulfur coal is the most important issue.This paper reviews the speciation,forms and distribution of sulfur in coal,the sulfur removal from raw coal,the thermal transformation of sulfur during coal pyrolysis,and the sulfur regulation during coal-blending coking of high organic-sulfur coals.It was suggested that the proper characterization of sulfur in coal cannot be obtained only by either chemical method or instrumental characterization,which raises the need of a combination of current or newly adopted characterization methods.Different from the removal of inorganic sulfur from coal,the organic sulfur can only be partly removed by chemical technologies;and the coal structure and property,particularly high-sulfur coking coals which have caking ability,may be altered and affected by the pretreatment processes.Based on the interactions among the sulfur radicals,sulfur-containing and hydrogen-containing fragments during coal pyrolysis and the reactions with minerals or nascent char,regulating the sulfur transformation behavior in the process of thermal conversion is the most effective way to utilize high organic-sulfur coals in the coke-making industry.An in-situ regulation approach of sulfur transformation during coal-blending coking has been suggested.That is,the high volatile coals with an appropriate releasing temperature range of CH4 overlapping well with that of H2 S from high organic-sulfur coals is blended with high organic-sulfur coals,and the C–S/C–C bonds in some sulfur forms are catalytically broken and immediately hydrogenated by the hydrogencontaining radicals generated from high volatile coals.Wherein,the effect of mass transfer on sulfur regulation during the coking process should be considered for the larger-scale coking tests through optimizing the ratios of different coals in the coal blend.展开更多
High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 i...High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 is characterized by high resins(40%-71%)and sulfur(2%-4%),and low wax (l%-6%),with n-alkanes removed by biodegradation,whereas family 2 is characterized by extremely abundant sulfur(3%-10%),and high asphaltenes(7%-31%)and wax(2%-19%),with no evidence of microbial attack.The oils of family 1 are distributed in the reservoir,lower than 1500 m throughout the sub-basin.Biomarker assemblages,such as low pristane/phytane ratios(1 Pr/Ph)and a high abundance of carotane,gammacerane,and dinosterane,suggest that they are derived from the calcareous mudstones and shales among the stratified,saline Es_4~u unit,in addition to the in situ biodegradation-concentrated sulfur content.However,the oils of family 2 are identified only in the western Zhanhua and eastern Chezhen depressions,with a depth deeper than 1700 m.Physical properties,together with biomarker ratios,including even-numbered n-alkanes,1 Pr/Ph,trace diasteranes,higher C35 homohopanes,and abundant dibenzothiophene series,with1 dibenzothiophene/phenanthrene,indicate an origin from carbonate source rocks.The X-ray diffraction analysis showed that the carbonate source rock is limited in the Es_4~u unit of the Bonan sag,which is different from most other source rocks in the same horizon.It is suggested that the high-sulfur,heavy oils are generated at the early stage of the oil window.Bacterial sulfate reduction might be responsible for the occurrence of sulfur species in the high-sulfur,heavy oils,while heavy biodegradation will enhance sulfur concentrations.展开更多
In the leaching solution of high-sulfur bauxite roasted by sulfuric acid,a high concentration of aluminum presented along with titanium and iron.The present work was to remove Ti(IV)from the leach liquor by calcium al...In the leaching solution of high-sulfur bauxite roasted by sulfuric acid,a high concentration of aluminum presented along with titanium and iron.The present work was to remove Ti(IV)from the leach liquor by calcium alginate microsphere sorbent material(CA-P204)based on natural alginate impregnated with di-(2-ethylhexyl)phosphoric acid(D2EHPA)to purify leaching solution.Cation exchange and chelation make major contributions to the adsorption mechanism according to Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis.The results showed that Ti(IV)was successfully removed by the CA-P204 adsorbent from the Ti(IV)-Al(III)-Fe(III)ternary system with a dynamic column experiment.The removal rate of titanium was nearly 95%under optimal conditions and the maximum adsorption capacity was 66.79 mg/g at pH 1.0.Reusability of CA-P204 was evaluated over three consecutive adsorption/desorption cycles.The adsorption process was simple,low-cost,and had no waste discharge,suggesting that the CA-P204 was promising,efficient,and economical for removing Ti(IV)from high-sulfur bauxite leaching solution.展开更多
There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption a...There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption and further improve the production rate of purified gas.A steady-state simulation model of high-sulfur natural gas purification process has been set up by using ProMax.Seven key operating parameters of the purification process have been determined based on the analysis of comprehensive energy consumption distribution.To solve the problem that the process model does not converge in some conditions,back-propagation(BP)neural network has been applied to substitute the simulation model to predict the relative parameters in the optimization model.The uniform design method and the table U21(107)have been applied to design the experiment points for training and testing BP model.High prediction accuracy can be achieved by using the BP model.Nondominated sorting genetic algorithm-II has been developed to optimize the two objectives,and 100 Pareto optimal solutions have been obtained.Three optimal points have been selected and evaluated further.The results demonstrate that the total comprehensive energy consumption is reduced by 13.4%and the production rate of purified gas is improved by 0.2%under the optimized operating conditions.展开更多
The centralized processing of high-sulfur and high-acidity crude has contributed to improvement of the overall economic benefits of the oil refining enterprise, but has also resulted in crude emulsification, severe co...The centralized processing of high-sulfur and high-acidity crude has contributed to improvement of the overall economic benefits of the oil refining enterprise, but has also resulted in crude emulsification, severe corrosion of process units and environmental protection issues. The long-cycle, safe and smooth operation of process units were guaranteed after selection of optimal processing routes and adoption of a series of technical measures.展开更多
World Bank offered 255 million RMB Yuan bank loan and 10 million RMB Yuan donation in equivalent US dollars to"Sichuan Natural Gas Development and Energy-saving Project".This project includes evaluation and ...World Bank offered 255 million RMB Yuan bank loan and 10 million RMB Yuan donation in equivalent US dollars to"Sichuan Natural Gas Development and Energy-saving Project".This project includes evaluation and development of 13 gasfields and gas-bearing structures in the east-ern Sichuan,reformation of low-permeability gas fields,reformation and expanding of gas pipeline system and related environmental protection in Moxi,Bajiaocang in Middle Sichuan,technical assistance and personnel training,etc.The loan period is limited to 20 years,including five years of extension period.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.21722604)the Postdoctoral Foundation of China(Nos.2019M651743 and 2020M671365)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20190852)the National Youth Natural Science Foundation(No.8111310009).
文摘High-sulfur petroleum coke(HSPC),that is a by-product from slag oil in the coking process of refning,shows versatility values in practical applications and,however,concentrates the majority of organic sulfur.Herein,we design and construct a highly efective CTAB@HPA composites to be explored for the catalytic oxidative desulfurization of HSPC under mild conditions using hydrogen peroxide as the oxidant and 1-butyl-3-methylimidazole tetrafuoroborate ionic liquid as the extractant.The results demonstrate that the sulfur content of HSPC could be strikingly reduced from 4.46 wt%to 2.48 wt%under 60℃ and atmospheric pressure,and that the organic sulfur in HSPC is mainly oxidized to sulfoxide,sulfone and sulfate,which latter can be directly separated from petroleum coke.Moreover,the efect of reaction conditions on the desulfurization performance of HSPC as well as the catalytic oxidation reaction kinetic of HSPC desulfurization was systematically investigated.Furthermore,a mechanism for the oxidative desulfurization of HSPC over CTAB@HPA catalysts was proposed.Therefore,this work provides new insight into how to construct active catalysts for the desulfurization of HSPC under mild conditions.
基金Projects(U1812402,51774102,51574095,51664005)supported by the National Natural Science Foundation of ChinaProjects([2015]4005,[2017]5788,[2017]5626,KY(2015)334)supported by Talents of Guizhou Science and Technology Cooperation Platform,China。
文摘Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumina digestion properties are significantly improved after suspension roasting.Under optimal conditions(t=70 min,T=280°C,w(CaO)=8%and Nk=245 g/L),the digestion ratios are 94.45%and 92.08%for the suspension-roasted and muffle-roasted ore,respectively,and the apparent activation energies are 63.26 and 64.24 kJ/mol,respectively.Two crystal models were established by Materials Studio based on the XRD patterns.The DFT simulation shows that the existing Al—O bands after suspension roasting can improve alumina digestion.The(104)and(113)planes of Al2O3 after suspension roasting are found to combine with NaOH more easily than those of Al2O3 treated in a muffle furnace.
基金financial support of National Natural Science Foundation of China(U1910201,21878208)Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi(TSTAP)Shanxi Province Science Foundation for Key Program(201901D111001(ZD))。
文摘The utilization of high-sulfur coal is becoming more urgent due to the excessive utilization of low-sulfur,high-quality coal resources,and sulfur removal from high-sulfur coal is the most important issue.This paper reviews the speciation,forms and distribution of sulfur in coal,the sulfur removal from raw coal,the thermal transformation of sulfur during coal pyrolysis,and the sulfur regulation during coal-blending coking of high organic-sulfur coals.It was suggested that the proper characterization of sulfur in coal cannot be obtained only by either chemical method or instrumental characterization,which raises the need of a combination of current or newly adopted characterization methods.Different from the removal of inorganic sulfur from coal,the organic sulfur can only be partly removed by chemical technologies;and the coal structure and property,particularly high-sulfur coking coals which have caking ability,may be altered and affected by the pretreatment processes.Based on the interactions among the sulfur radicals,sulfur-containing and hydrogen-containing fragments during coal pyrolysis and the reactions with minerals or nascent char,regulating the sulfur transformation behavior in the process of thermal conversion is the most effective way to utilize high organic-sulfur coals in the coke-making industry.An in-situ regulation approach of sulfur transformation during coal-blending coking has been suggested.That is,the high volatile coals with an appropriate releasing temperature range of CH4 overlapping well with that of H2 S from high organic-sulfur coals is blended with high organic-sulfur coals,and the C–S/C–C bonds in some sulfur forms are catalytically broken and immediately hydrogenated by the hydrogencontaining radicals generated from high volatile coals.Wherein,the effect of mass transfer on sulfur regulation during the coking process should be considered for the larger-scale coking tests through optimizing the ratios of different coals in the coal blend.
基金Funds to support this research were provided by the National Science Foundation of China(no. 40703011)
文摘High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 is characterized by high resins(40%-71%)and sulfur(2%-4%),and low wax (l%-6%),with n-alkanes removed by biodegradation,whereas family 2 is characterized by extremely abundant sulfur(3%-10%),and high asphaltenes(7%-31%)and wax(2%-19%),with no evidence of microbial attack.The oils of family 1 are distributed in the reservoir,lower than 1500 m throughout the sub-basin.Biomarker assemblages,such as low pristane/phytane ratios(1 Pr/Ph)and a high abundance of carotane,gammacerane,and dinosterane,suggest that they are derived from the calcareous mudstones and shales among the stratified,saline Es_4~u unit,in addition to the in situ biodegradation-concentrated sulfur content.However,the oils of family 2 are identified only in the western Zhanhua and eastern Chezhen depressions,with a depth deeper than 1700 m.Physical properties,together with biomarker ratios,including even-numbered n-alkanes,1 Pr/Ph,trace diasteranes,higher C35 homohopanes,and abundant dibenzothiophene series,with1 dibenzothiophene/phenanthrene,indicate an origin from carbonate source rocks.The X-ray diffraction analysis showed that the carbonate source rock is limited in the Es_4~u unit of the Bonan sag,which is different from most other source rocks in the same horizon.It is suggested that the high-sulfur,heavy oils are generated at the early stage of the oil window.Bacterial sulfate reduction might be responsible for the occurrence of sulfur species in the high-sulfur,heavy oils,while heavy biodegradation will enhance sulfur concentrations.
基金Project(21201094) supported by the National Natural Science Foundation of China
文摘In the leaching solution of high-sulfur bauxite roasted by sulfuric acid,a high concentration of aluminum presented along with titanium and iron.The present work was to remove Ti(IV)from the leach liquor by calcium alginate microsphere sorbent material(CA-P204)based on natural alginate impregnated with di-(2-ethylhexyl)phosphoric acid(D2EHPA)to purify leaching solution.Cation exchange and chelation make major contributions to the adsorption mechanism according to Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis.The results showed that Ti(IV)was successfully removed by the CA-P204 adsorbent from the Ti(IV)-Al(III)-Fe(III)ternary system with a dynamic column experiment.The removal rate of titanium was nearly 95%under optimal conditions and the maximum adsorption capacity was 66.79 mg/g at pH 1.0.Reusability of CA-P204 was evaluated over three consecutive adsorption/desorption cycles.The adsorption process was simple,low-cost,and had no waste discharge,suggesting that the CA-P204 was promising,efficient,and economical for removing Ti(IV)from high-sulfur bauxite leaching solution.
基金Financial support from National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2016ZX05017-004)
文摘There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption and further improve the production rate of purified gas.A steady-state simulation model of high-sulfur natural gas purification process has been set up by using ProMax.Seven key operating parameters of the purification process have been determined based on the analysis of comprehensive energy consumption distribution.To solve the problem that the process model does not converge in some conditions,back-propagation(BP)neural network has been applied to substitute the simulation model to predict the relative parameters in the optimization model.The uniform design method and the table U21(107)have been applied to design the experiment points for training and testing BP model.High prediction accuracy can be achieved by using the BP model.Nondominated sorting genetic algorithm-II has been developed to optimize the two objectives,and 100 Pareto optimal solutions have been obtained.Three optimal points have been selected and evaluated further.The results demonstrate that the total comprehensive energy consumption is reduced by 13.4%and the production rate of purified gas is improved by 0.2%under the optimized operating conditions.
文摘The centralized processing of high-sulfur and high-acidity crude has contributed to improvement of the overall economic benefits of the oil refining enterprise, but has also resulted in crude emulsification, severe corrosion of process units and environmental protection issues. The long-cycle, safe and smooth operation of process units were guaranteed after selection of optimal processing routes and adoption of a series of technical measures.
文摘World Bank offered 255 million RMB Yuan bank loan and 10 million RMB Yuan donation in equivalent US dollars to"Sichuan Natural Gas Development and Energy-saving Project".This project includes evaluation and development of 13 gasfields and gas-bearing structures in the east-ern Sichuan,reformation of low-permeability gas fields,reformation and expanding of gas pipeline system and related environmental protection in Moxi,Bajiaocang in Middle Sichuan,technical assistance and personnel training,etc.The loan period is limited to 20 years,including five years of extension period.