The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The ch...The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The chemical properties of reservoir water are very important for reservoir evaluation and are significant indicators of the sealing of reservoir oil and gas resources.Therefore,the caprock of the Chang 6 reservoir in the Yanchang Formation was evaluated.The authors tested and analyzed the chemical characteristics of water samples selected from 30 wells in the Chang 6 reservoir of Ansai Oilfield in the Ordos Basin.The results show that the Chang 6 reservoir water in Ansai Oilfield is dominated by calcium-chloride water type with a sodium chloride coefficient of generally less than 0.5.The chloride magnesium coefficients are between 33.7 and 925.5,most of which are greater than 200.The desulfurization coefficients range from 0.21 to 13.4,with an average of 2.227.The carbonate balance coefficients are mainly concentrated below 0.01,with an average of 0.008.The calcium and magnesium coefficients are between 0.08 and 0.003,with an average of 0.01.Combined with the characteristics of the four-corner layout of the reservoir water,the above results show that the graphics are basically consistent.The study indicates that the Chang 6 reservoir in Ansai Oilfield in the Ordos Basin is a favorable block for oil and gas storage with good sealing properties,great preservation conditions of oil and gas,and high pore connectivity.展开更多
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
Core, well logging and seismic data were used to investigate sandbody architectural characteristics within Lower Member of Minghuazhen Formation in Neogene, Bohai BZ25 Oilfield, and to analyze the sedimentary microfac...Core, well logging and seismic data were used to investigate sandbody architectural characteristics within Lower Member of Minghuazhen Formation in Neogene, Bohai BZ25 Oilfield, and to analyze the sedimentary microfacies, distribution and internal architecture characteristics of the bar finger within shoal water delta front. The branched sand body within shoal water delta front is the bar finger, consisting of the mouth bar, distributary channel over bar, and levee. The distributary channel cuts through the mouth bar, and the thin levee covers the mouth bar which is located at both sides of distributary channel. The bar finger is commonly sinuous and its sinuosity increases basinward. The distributary channel changes from deeply incising the mouth bar to shallowly incising top of the mouth bar.The aspect ratio ranges from 25 to 50 and there is a double logarithmic linear positive relationship between the width and thickness for the bar finger, which is controlled by base-level changing in study area. For the bar finger, injection and production in the same distributary channel should be avoided during water flooding development. In addition, middle–upper distributary channel and undrilled mouth bar are focus of tapping remaining oil.展开更多
Oilfield waters from Cenozoic and Mesozoic terrestrial and Paleozoic marine environments in the Tarim Basin show no obvious difference in water chemistry except Br and isotopic compositions. The Paleozoic marine strat...Oilfield waters from Cenozoic and Mesozoic terrestrial and Paleozoic marine environments in the Tarim Basin show no obvious difference in water chemistry except Br and isotopic compositions. The Paleozoic marine strata have higher Br concentrations than the terrestrial sediments, and the lack of obvious relationship between Br and Ⅰ suggests that Br is not, for the most part, derived from the degradation of organic matter. The oilfield waters are characterized by high TDS (total dissolved solids), ranging from 120000mg/L to 320000mg/L,relatively low Mg, high Ca, Sr, and CF relative to Br of evaporating seawater, suggestive of enhanced water-rock interaction. (Al (organic acid anions) concentrations are generally lower than 1500 mg/L with high values occurring over the temperature range from 95℃ to 140℃ ,in the Cambrian to Jurassic systems, and nearby unconformities. Organic acids are considered to be generated mainly from thermal maturation of kerogens during progressive burial of the Jurassic-Triassic and Cambrian-Ordovician systems, biodegradation of crude oils nearby unconformities, and thermochemical sulfate reduction in part of the Cambrian and Ordovician strata.High Al concentrations up to 3 mg/L to 5. 5 mg/L tend to occur in the waters of high OAA or petroleum- bearing intervals, suggesting the presence of organic complexing agents. Calculation by SOLMINEQ. 88 with updated database shows that AlAc2+ may account for more than 30%of the total Al. IsotoPic measurements (δD, δ18O) provide evidence for the following types of waters: diagenetically- modified connate meteoric water from the Jurassic and Triassic strata;diagenetically-modified connate marine water from the Cambrian and Ordovician strata; subaerially-evaporated water from the Cenozoic and Cretaceous strata; and mixed meteoric-evaporated or/and diagenetically modified connate water from the Carboniferous strata and reservoirs adjacent to the J/C and T/C unconformities. Those waters with very negativeδD values from -51. 30‰. to - 53. 80‰ (SMOW) and positive δ18 O values from 2. 99‰ to 4. 99‰(SMOW) in the continuous burial of the Cambrian-Ordovician system are explained to have resulted from hydrocarbon-water and water-rock interactions.展开更多
China is lack of bromine and potassium seriously.Oilfield brines is the headline goal of bromine and potassium resources exploration.Applicants grab 24oilfield brines samples from various wells of Ordovician
Hydrogeochemical simulation is an effective method to study water-rock interaction. In this paper, PHREEQM was used for the simulation of water-rock interaction under water flooding in the Renqiu Oilfield. Calculated ...Hydrogeochemical simulation is an effective method to study water-rock interaction. In this paper, PHREEQM was used for the simulation of water-rock interaction under water flooding in the Renqiu Oilfield. Calculated results revealed that when fresh water was injected into the reservoir, Cl\+- and Na\++ would decrease without involvement in water-rock interaction. Erosion to dolomite will lead to an increase in Ca\+\{2+\}, Mg\+\{2+\} and CaHCO\++\-3. Saturation index of calcite and aragonite decreased first and then increased. With fresh water accounting for up to 70%, mixed water has the strongest erosion ability. Deoiled water has erosion ability under high temperature and high partial pressure of CO\-2. Pyrite and gypsum were sensitive to deoiled water, which can cause the dissolution of pyrite and the precipitation of gypsum. Micrographs revealed a great deal of information about water-rock interaction.展开更多
A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of di...A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of dissolved hydrocarbons varied with the hydrocarbon-generating potential of reservoirs. The concentrations of dissolved hydrocarbons were low in dry layers, water layers and gas-water layers, but high in gas reservoirs and oil reservoirs, especially in gas reservoirs with condensed oil. Series of carbon-number alkanes were usually absent in oilfield water from dry layers, water layers and gas-water layers but abundant in oilfield water from oil-water reservoirs, gas reservoirs and oil reservoirs, whose carbon numbers varied most widely in oil reservoirs and least in gas reservoirs. A preliminary evaluation model for reservoir hydrocarbon-generating potential was established based on the characteristics of dissolved hydrocarbons in oilfield water to assist hydrocarbon exploration.展开更多
In order to predict the corrosion trendency of X100 pipeline steel in flowing oilfield produced water,the effect of flow rate on the corrosion behavior of X100 pipeline steel was studied under general dynamic conditio...In order to predict the corrosion trendency of X100 pipeline steel in flowing oilfield produced water,the effect of flow rate on the corrosion behavior of X100 pipeline steel was studied under general dynamic condition and simulated real working condition at the flow rate of 0.2,0.4,and 0.6 m·s^(-1).Potentiodynamic polarization curves and electrochemical impedance spectroscopy were used to study the corrosion behavior of X100 steel.Energy dispersive spectroscopy,X-ray diffraction and scanning electron microscopy were used to analyze corrosion product composition and micromorphology.The experimental results show that the corrosion is more serious under simulated real working conditions than that under the general dynamic conditions.In any case the corrosion current density increases with the increase of the flow rate,and the total impedance value decreases.The corrosion products include Fe_(3)O_(4),Fe_(2)O_(3),and FeOOH.The mass transfer and electrochemistry were simulated by flow coupled in COMSOL software.The multiphysical field coupling simulation results are closer to the engineering practice than the single flow field simulation,and similar results from the experiments were obtained.Both experimental and simulation results reveal that the higher flow rate is,the more serious corrosion appear and the more corrosion products accumulate.By combining experimental and COMSOL simulation data,the corrosion process model of X100 steel was proposed.展开更多
This paper, based on the fundamental inorganic chemical and organic geochemical characteristics of oilfield waters from the Turpan Depression, presents the contents of organic matter, the distribution of low-carbon fa...This paper, based on the fundamental inorganic chemical and organic geochemical characteristics of oilfield waters from the Turpan Depression, presents the contents of organic matter, the distribution of low-carbon fatty acids and the contents of aromatic hydrocarbons as well as their principal ultraviolet absorption spectral and fluorescence spectral characteristics in oilfield waters from different oil/gas-bearing areas. The oil/gas reservoirs in this depression are classified in terms of their conserving conditions. In addition, the paper also discusses the chemical characteristics of oilfield waters from different types of oil/gas reservoirs with an emphasis on the characteristics of their localization in the γ_Na/γCa-γNa/γ_Cl correction diagram. On this basis it is attempted to expound the fundamental geochemical characteristics of oilfield waters from the Turpan Depression and their geological significance.展开更多
To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for f...To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.展开更多
BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,w...BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,well pattern arrangement and development model in offshore oilfields in China.In view of the difficulty in describing the reservoir configuration of shallow water delta,the single distributary sand dam in shallow water delta is characterized by well-seismic combination and multi-attribute constraints.The mathematical mechanism model of pinch-out position of sand body is established,fine characterization of BZ shallow water delta reservoir is put forward.The horizontal well pattern arrangement type for shallow water delta reservoir is proposed and the method of well pattern optimization based on vertical displacement theory is put forward.A method of inversion of reservoir connectivity using production dynamic data by numerical well testing is proposed and a new method for optimizing water injection rate in water injection wells is proposed aiming at the difficulty of recognizing injection-production connectivity of shallow water delta reservoirs.The fine configuration of BZ shallow water delta reservoir based on distributary sand dam is proposed,which guides the recognition of remaining oil distribution law.By deploying adjustment wells,the water flooding coincidence degree of actual drilling is 86% compared with that of pre-drilling prediction,which indicates that the research results of reservoir configuration can effectively guide the understanding of oilfield geology.Through the theoretical well arrangement type of vertical displacement of single sand body in horizontal wells of shallow water delta reservoir,a high water flooding recovery rate of 35% is achieved in primary well pattern.The connectivity coefficients of injection-production boundary of shallow water delta reservoir configuration are calculated,and the water injection distribution coefficients are obtained by normalizing the directional coefficients.This paper presents a configuration method based on multi-attribute fusion under the constraints of sedimentary process.In this paper,a shallow water delta reservoir configuration method based on multi-attribute fusion constrained by sedimentary process is proposed,and the injection-production connectivity coefficient and injection well distribution coefficient of the configuration boundary are calculated.展开更多
Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies...Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs.展开更多
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金supported by the Jiangsu Natural Science Foundation project(SBK2021045820)the Chongqing Natural Science Foundation general Project(cstc2021jcyj-msxmX0624)+1 种基金the Graduate Innovation Program of China University of Mining and Technology(2022WLKXJ002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_2600).
文摘The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The chemical properties of reservoir water are very important for reservoir evaluation and are significant indicators of the sealing of reservoir oil and gas resources.Therefore,the caprock of the Chang 6 reservoir in the Yanchang Formation was evaluated.The authors tested and analyzed the chemical characteristics of water samples selected from 30 wells in the Chang 6 reservoir of Ansai Oilfield in the Ordos Basin.The results show that the Chang 6 reservoir water in Ansai Oilfield is dominated by calcium-chloride water type with a sodium chloride coefficient of generally less than 0.5.The chloride magnesium coefficients are between 33.7 and 925.5,most of which are greater than 200.The desulfurization coefficients range from 0.21 to 13.4,with an average of 2.227.The carbonate balance coefficients are mainly concentrated below 0.01,with an average of 0.008.The calcium and magnesium coefficients are between 0.08 and 0.003,with an average of 0.01.Combined with the characteristics of the four-corner layout of the reservoir water,the above results show that the graphics are basically consistent.The study indicates that the Chang 6 reservoir in Ansai Oilfield in the Ordos Basin is a favorable block for oil and gas storage with good sealing properties,great preservation conditions of oil and gas,and high pore connectivity.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.
基金Supported by the National Natural Science Foundation of China(41772101)China National Science and Technology Major Project(2017ZX05009001-002)
文摘Core, well logging and seismic data were used to investigate sandbody architectural characteristics within Lower Member of Minghuazhen Formation in Neogene, Bohai BZ25 Oilfield, and to analyze the sedimentary microfacies, distribution and internal architecture characteristics of the bar finger within shoal water delta front. The branched sand body within shoal water delta front is the bar finger, consisting of the mouth bar, distributary channel over bar, and levee. The distributary channel cuts through the mouth bar, and the thin levee covers the mouth bar which is located at both sides of distributary channel. The bar finger is commonly sinuous and its sinuosity increases basinward. The distributary channel changes from deeply incising the mouth bar to shallowly incising top of the mouth bar.The aspect ratio ranges from 25 to 50 and there is a double logarithmic linear positive relationship between the width and thickness for the bar finger, which is controlled by base-level changing in study area. For the bar finger, injection and production in the same distributary channel should be avoided during water flooding development. In addition, middle–upper distributary channel and undrilled mouth bar are focus of tapping remaining oil.
文摘Oilfield waters from Cenozoic and Mesozoic terrestrial and Paleozoic marine environments in the Tarim Basin show no obvious difference in water chemistry except Br and isotopic compositions. The Paleozoic marine strata have higher Br concentrations than the terrestrial sediments, and the lack of obvious relationship between Br and Ⅰ suggests that Br is not, for the most part, derived from the degradation of organic matter. The oilfield waters are characterized by high TDS (total dissolved solids), ranging from 120000mg/L to 320000mg/L,relatively low Mg, high Ca, Sr, and CF relative to Br of evaporating seawater, suggestive of enhanced water-rock interaction. (Al (organic acid anions) concentrations are generally lower than 1500 mg/L with high values occurring over the temperature range from 95℃ to 140℃ ,in the Cambrian to Jurassic systems, and nearby unconformities. Organic acids are considered to be generated mainly from thermal maturation of kerogens during progressive burial of the Jurassic-Triassic and Cambrian-Ordovician systems, biodegradation of crude oils nearby unconformities, and thermochemical sulfate reduction in part of the Cambrian and Ordovician strata.High Al concentrations up to 3 mg/L to 5. 5 mg/L tend to occur in the waters of high OAA or petroleum- bearing intervals, suggesting the presence of organic complexing agents. Calculation by SOLMINEQ. 88 with updated database shows that AlAc2+ may account for more than 30%of the total Al. IsotoPic measurements (δD, δ18O) provide evidence for the following types of waters: diagenetically- modified connate meteoric water from the Jurassic and Triassic strata;diagenetically-modified connate marine water from the Cambrian and Ordovician strata; subaerially-evaporated water from the Cenozoic and Cretaceous strata; and mixed meteoric-evaporated or/and diagenetically modified connate water from the Carboniferous strata and reservoirs adjacent to the J/C and T/C unconformities. Those waters with very negativeδD values from -51. 30‰. to - 53. 80‰ (SMOW) and positive δ18 O values from 2. 99‰ to 4. 99‰(SMOW) in the continuous burial of the Cambrian-Ordovician system are explained to have resulted from hydrocarbon-water and water-rock interactions.
基金supported by Geological survey project (Project Number: 12120113078500)
文摘China is lack of bromine and potassium seriously.Oilfield brines is the headline goal of bromine and potassium resources exploration.Applicants grab 24oilfield brines samples from various wells of Ordovician
基金TheprojectwasgrantedbytheNationalNaturalScienceFoundationofChina (No .496 72 15 9)
文摘Hydrogeochemical simulation is an effective method to study water-rock interaction. In this paper, PHREEQM was used for the simulation of water-rock interaction under water flooding in the Renqiu Oilfield. Calculated results revealed that when fresh water was injected into the reservoir, Cl\+- and Na\++ would decrease without involvement in water-rock interaction. Erosion to dolomite will lead to an increase in Ca\+\{2+\}, Mg\+\{2+\} and CaHCO\++\-3. Saturation index of calcite and aragonite decreased first and then increased. With fresh water accounting for up to 70%, mixed water has the strongest erosion ability. Deoiled water has erosion ability under high temperature and high partial pressure of CO\-2. Pyrite and gypsum were sensitive to deoiled water, which can cause the dissolution of pyrite and the precipitation of gypsum. Micrographs revealed a great deal of information about water-rock interaction.
文摘A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of dissolved hydrocarbons varied with the hydrocarbon-generating potential of reservoirs. The concentrations of dissolved hydrocarbons were low in dry layers, water layers and gas-water layers, but high in gas reservoirs and oil reservoirs, especially in gas reservoirs with condensed oil. Series of carbon-number alkanes were usually absent in oilfield water from dry layers, water layers and gas-water layers but abundant in oilfield water from oil-water reservoirs, gas reservoirs and oil reservoirs, whose carbon numbers varied most widely in oil reservoirs and least in gas reservoirs. A preliminary evaluation model for reservoir hydrocarbon-generating potential was established based on the characteristics of dissolved hydrocarbons in oilfield water to assist hydrocarbon exploration.
基金Funded by the Beijing Municipal Natural Science Foundation(No.3192013)the National Natural Science Foundation of China(No.51774046)。
文摘In order to predict the corrosion trendency of X100 pipeline steel in flowing oilfield produced water,the effect of flow rate on the corrosion behavior of X100 pipeline steel was studied under general dynamic condition and simulated real working condition at the flow rate of 0.2,0.4,and 0.6 m·s^(-1).Potentiodynamic polarization curves and electrochemical impedance spectroscopy were used to study the corrosion behavior of X100 steel.Energy dispersive spectroscopy,X-ray diffraction and scanning electron microscopy were used to analyze corrosion product composition and micromorphology.The experimental results show that the corrosion is more serious under simulated real working conditions than that under the general dynamic conditions.In any case the corrosion current density increases with the increase of the flow rate,and the total impedance value decreases.The corrosion products include Fe_(3)O_(4),Fe_(2)O_(3),and FeOOH.The mass transfer and electrochemistry were simulated by flow coupled in COMSOL software.The multiphysical field coupling simulation results are closer to the engineering practice than the single flow field simulation,and similar results from the experiments were obtained.Both experimental and simulation results reveal that the higher flow rate is,the more serious corrosion appear and the more corrosion products accumulate.By combining experimental and COMSOL simulation data,the corrosion process model of X100 steel was proposed.
文摘This paper, based on the fundamental inorganic chemical and organic geochemical characteristics of oilfield waters from the Turpan Depression, presents the contents of organic matter, the distribution of low-carbon fatty acids and the contents of aromatic hydrocarbons as well as their principal ultraviolet absorption spectral and fluorescence spectral characteristics in oilfield waters from different oil/gas-bearing areas. The oil/gas reservoirs in this depression are classified in terms of their conserving conditions. In addition, the paper also discusses the chemical characteristics of oilfield waters from different types of oil/gas reservoirs with an emphasis on the characteristics of their localization in the γ_Na/γCa-γNa/γ_Cl correction diagram. On this basis it is attempted to expound the fundamental geochemical characteristics of oilfield waters from the Turpan Depression and their geological significance.
基金Supported by Science Coordination New Project(2016KTCL01-12)
文摘To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.
文摘BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,well pattern arrangement and development model in offshore oilfields in China.In view of the difficulty in describing the reservoir configuration of shallow water delta,the single distributary sand dam in shallow water delta is characterized by well-seismic combination and multi-attribute constraints.The mathematical mechanism model of pinch-out position of sand body is established,fine characterization of BZ shallow water delta reservoir is put forward.The horizontal well pattern arrangement type for shallow water delta reservoir is proposed and the method of well pattern optimization based on vertical displacement theory is put forward.A method of inversion of reservoir connectivity using production dynamic data by numerical well testing is proposed and a new method for optimizing water injection rate in water injection wells is proposed aiming at the difficulty of recognizing injection-production connectivity of shallow water delta reservoirs.The fine configuration of BZ shallow water delta reservoir based on distributary sand dam is proposed,which guides the recognition of remaining oil distribution law.By deploying adjustment wells,the water flooding coincidence degree of actual drilling is 86% compared with that of pre-drilling prediction,which indicates that the research results of reservoir configuration can effectively guide the understanding of oilfield geology.Through the theoretical well arrangement type of vertical displacement of single sand body in horizontal wells of shallow water delta reservoir,a high water flooding recovery rate of 35% is achieved in primary well pattern.The connectivity coefficients of injection-production boundary of shallow water delta reservoir configuration are calculated,and the water injection distribution coefficients are obtained by normalizing the directional coefficients.This paper presents a configuration method based on multi-attribute fusion under the constraints of sedimentary process.In this paper,a shallow water delta reservoir configuration method based on multi-attribute fusion constrained by sedimentary process is proposed,and the injection-production connectivity coefficient and injection well distribution coefficient of the configuration boundary are calculated.
文摘Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs.