The cost of dairy manure treatment and bedding material purchase increases the operating cost of the dairy farm.Membrane-covered aerobic fermentation system has been widely used for dealing with dairy manure and recyc...The cost of dairy manure treatment and bedding material purchase increases the operating cost of the dairy farm.Membrane-covered aerobic fermentation system has been widely used for dealing with dairy manure and recycling the final product as bedding material.However,the microbial safety in each processing step is still uncertain.To better understand the bacterial community dynamics during the whole bedding conversion process,a full-chain and large-scale experiment including 16-day membrane-covered aerobic fermentation and 11-day bedding material application was conducted.The results showed that the pile temperatures in the fermentation stage rapidly increased to 80°C and maintained>50°C for more than 11 days and the use of fermentation product as bedding material provided cows with a stable and comfortable bedding environment.The Chao1 and Shannon index decreased at the end of the fermentation stage and remained stable in the application stage,indicating that membrane-covered aerobic fermentation effectively killed some pathogenic bacteria and guaranteed both the maturity and stability of the final product.The dominant bacteria in the fermentation stage were Acinetobacter,Thermus,and Rhodothermus at genus level.Seven common potential pathogens of mastitis(Staphylococcus,Enterococcus,Serratia,Pseudomonas,Corynebacterium,Mycobacterium,and Bacillus)were found at the end of fermentation stage but the relative abundance was low(0.0025%-0.2727%).The dominant bacteria in the application stage mainly included Acinetobacter,Pseudomonas,and Flavobacterium at the genus level.The relative abundance of Pseudomonas increased in the application stage,which was a reminder to the dairy farm to pay attention to the disinfection and timely replacement of bedding material to prevent the occurrence of dairy mastitis.The results of this study contributed deep understanding of the microorganism-driven bedding conversion process and provide practical guidance and cautions for the bedding materials application.展开更多
Fermented chile pepper mash is a major food product in New Mexico. There are few reports on the fermentation process or on methods to monitor it, In the current study we examined a pour plate procedure with an overlay...Fermented chile pepper mash is a major food product in New Mexico. There are few reports on the fermentation process or on methods to monitor it, In the current study we examined a pour plate procedure with an overlay using plate count agar and 3 MTM PetrifilmTM Aerobic Count (AC) plates for determination of total aerobic bacterial counts during the fermentation of chile mash. Fifty chile mash samples were obtained directly from commercial fermentation vats and examined within 2 h of collection. Serial dilutions of the chile mash were prepared in Butterfield's Phosphate Buffer. 1 mL portions of the diluted samples were aliquoted in duplicate onto the AC plates and into empty Petri dishes. Plate count agar was poured and once the plates had solidified, they were overlaid with about 10 mL of PCA to minimize spreaders. Plates were incubated at 30 ℃ for 48 h and enumerated. Paired difference tests were conducted on log transformed data to compare the results of the two plating procedures. For commercial chile mash samples, we did not show any significant differences between the AC plate counts and the pour plate counts (α = 0.05), 3 MTM PetrifilmTM AC plates are a good alternative to pour plates for the determination of the total aerobic counts in fermented chile mashes.展开更多
This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn bas...This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage.展开更多
Lignin degradation restricts corn stover anaerobic fermentation efficiency.The vacuum negative pressure aerobic hydrolysis pretreatment of corn stover was tested,and the optimal combined pretreatment conditions were p...Lignin degradation restricts corn stover anaerobic fermentation efficiency.The vacuum negative pressure aerobic hydrolysis pretreatment of corn stover was tested,and the optimal combined pretreatment conditions were presented in this paper.Because of the physical characteristics of light weight and large specific porosity of stover,it led to the formation of a scum layer during the fermentation process and thus reduced the gas production rate.In the pretreatment design,the vacuum conditions(0.02-0.08 MPa)and dwell time(5-20 min)were selected to see the changes of volumetric weight,swelling and specific porosity of corn stover,resulting in an increase of the volumetric weight by 7.18%-28.72%,an increase of the swelling by 3.18%-58.59%,and a decrease of the specific porosity by 9.34%-38.59%,as compared with the CK group.Continuous vacuum negative pressure treatment could discharge the air inside the stover destroy the microstructure,and cause the stover to settle more easily during the aerobic hydrolysis process.The optimal aerobic hydrolysis temperature and time were determined to be 39°C and 12.65 h,respectively.With the optimal pretreatment,the corn stover anaerobic fermentation test realized a cumulative methane yield of 260.44 mL/g VS,22.71%higher than CK group;meanwhile,the hydraulic retention time was shortened by 32.39%.展开更多
基金the China Agriculture Research System of MOF and MARA(CARS 36)Fundamental Research Funds for the Central Universities(Grant No.2021TC039)the National Natural Science Foundation of China(Grant No.31771684).
文摘The cost of dairy manure treatment and bedding material purchase increases the operating cost of the dairy farm.Membrane-covered aerobic fermentation system has been widely used for dealing with dairy manure and recycling the final product as bedding material.However,the microbial safety in each processing step is still uncertain.To better understand the bacterial community dynamics during the whole bedding conversion process,a full-chain and large-scale experiment including 16-day membrane-covered aerobic fermentation and 11-day bedding material application was conducted.The results showed that the pile temperatures in the fermentation stage rapidly increased to 80°C and maintained>50°C for more than 11 days and the use of fermentation product as bedding material provided cows with a stable and comfortable bedding environment.The Chao1 and Shannon index decreased at the end of the fermentation stage and remained stable in the application stage,indicating that membrane-covered aerobic fermentation effectively killed some pathogenic bacteria and guaranteed both the maturity and stability of the final product.The dominant bacteria in the fermentation stage were Acinetobacter,Thermus,and Rhodothermus at genus level.Seven common potential pathogens of mastitis(Staphylococcus,Enterococcus,Serratia,Pseudomonas,Corynebacterium,Mycobacterium,and Bacillus)were found at the end of fermentation stage but the relative abundance was low(0.0025%-0.2727%).The dominant bacteria in the application stage mainly included Acinetobacter,Pseudomonas,and Flavobacterium at the genus level.The relative abundance of Pseudomonas increased in the application stage,which was a reminder to the dairy farm to pay attention to the disinfection and timely replacement of bedding material to prevent the occurrence of dairy mastitis.The results of this study contributed deep understanding of the microorganism-driven bedding conversion process and provide practical guidance and cautions for the bedding materials application.
文摘Fermented chile pepper mash is a major food product in New Mexico. There are few reports on the fermentation process or on methods to monitor it, In the current study we examined a pour plate procedure with an overlay using plate count agar and 3 MTM PetrifilmTM Aerobic Count (AC) plates for determination of total aerobic bacterial counts during the fermentation of chile mash. Fifty chile mash samples were obtained directly from commercial fermentation vats and examined within 2 h of collection. Serial dilutions of the chile mash were prepared in Butterfield's Phosphate Buffer. 1 mL portions of the diluted samples were aliquoted in duplicate onto the AC plates and into empty Petri dishes. Plate count agar was poured and once the plates had solidified, they were overlaid with about 10 mL of PCA to minimize spreaders. Plates were incubated at 30 ℃ for 48 h and enumerated. Paired difference tests were conducted on log transformed data to compare the results of the two plating procedures. For commercial chile mash samples, we did not show any significant differences between the AC plate counts and the pour plate counts (α = 0.05), 3 MTM PetrifilmTM AC plates are a good alternative to pour plates for the determination of the total aerobic counts in fermented chile mashes.
基金supported by the project of Jiangsu Independent Innovation,China(CX(15)1003-3)the Key Technologies R&D Program of China during the 13th Five-Year Plan period(2016YFC0502005)the Special Project of Grass of Tibet Autonomous Region for the 13th Five-Year Plan,China
文摘This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage.
基金supported by the Technological Project of Heilongjiang Province“the open competition mechanism to select the best candidates”(2022ZXJ05C01-03).
文摘Lignin degradation restricts corn stover anaerobic fermentation efficiency.The vacuum negative pressure aerobic hydrolysis pretreatment of corn stover was tested,and the optimal combined pretreatment conditions were presented in this paper.Because of the physical characteristics of light weight and large specific porosity of stover,it led to the formation of a scum layer during the fermentation process and thus reduced the gas production rate.In the pretreatment design,the vacuum conditions(0.02-0.08 MPa)and dwell time(5-20 min)were selected to see the changes of volumetric weight,swelling and specific porosity of corn stover,resulting in an increase of the volumetric weight by 7.18%-28.72%,an increase of the swelling by 3.18%-58.59%,and a decrease of the specific porosity by 9.34%-38.59%,as compared with the CK group.Continuous vacuum negative pressure treatment could discharge the air inside the stover destroy the microstructure,and cause the stover to settle more easily during the aerobic hydrolysis process.The optimal aerobic hydrolysis temperature and time were determined to be 39°C and 12.65 h,respectively.With the optimal pretreatment,the corn stover anaerobic fermentation test realized a cumulative methane yield of 260.44 mL/g VS,22.71%higher than CK group;meanwhile,the hydraulic retention time was shortened by 32.39%.