期刊文献+
共找到6,171篇文章
< 1 2 250 >
每页显示 20 50 100
High-temperature tribological properties of Ni-P alloy coatings deposited by electro-brush plating 被引量:6
1
作者 LI Zhiming QIAN Shiqiang +2 位作者 WANG Wei SHEN Hongwei LONG Hesun 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期669-675,共7页
High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were us... High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed. 展开更多
关键词 sliding wear high temperature electro-brush plating Ni-P alloy coating surface analysis
下载PDF
Structural characteristics and high-temperature tribological behaviors of laser cladded NiCoCrAlY−B_(4)C composite coatings on Ti6Al4V alloy 被引量:9
2
作者 Wen-chang WANG Jia-xing LI +1 位作者 Yuan GE De-jun KONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第9期2729-2739,共11页
In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The mo... In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The morphologies,chemical compositions and phases of obtained coatings were analyzed using scanning electronic microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD),respectively.The effects of B_(4)C mass fraction on the coefficient of friction(COF)and wear rate of NiCoCrAlY-B_(4)C coatings were investigated using a ball-on-disc wear tester.The results show that the NiCoCrAlY-B_(4)C coatings with different B_(4)C mass fractions are mainly composed of NiTi,NiTi_(2),α-Ti,CoO,AlB_(2),TiC,TiB and TiB_(2)phases.The COFs and wear rates of NiCoCrAlY-B_(4)C coatings decrease with the increase of B_(4)C content,which are contributed to the improvement of coating hardness by the B_(4)C addition.The wear mechanisms of NiCoCrAlY-B_(4)C coatings are changed from adhesive wear and oxidation wear to fatigue wear with the increase of B_(4)C content. 展开更多
关键词 Ti6Al4V alloy laser cladding NiCoCrAlY coating B_(4)C tribological behavior WEAR
下载PDF
Evaluation of Oxidation of Ti-Al and Ti-Al-Cr Coatings Arc-ion Plated on Ti-60 High-temperature Titanium Alloy 被引量:1
3
作者 Wei Yan Qingjiang Wang +2 位作者 Jianrong Liu Shaoqiang Li Fengjiu Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期637-644,共8页
High-temperature titanium alloy for aeroengine compressor applications suffers from high-temperature oxidation and environmental corrosion, which prohibits long-term service of this kind alloy at temperatures above 60... High-temperature titanium alloy for aeroengine compressor applications suffers from high-temperature oxidation and environmental corrosion, which prohibits long-term service of this kind alloy at temperatures above 600℃. In an attempt to tackle this problem, Ti-48Al (at. pct) and Ti-48Al-12Cr (at. pct) protective coatings were plated on the substrate of alloy Ti-60 by arc ion plating (ALP) method. Isothermal and cyclic oxidation tests were performed in static air at elevated temperatures. Phase composition, morphology of the coatings and distribution of elements were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the Ti-48Al coating exhibited good isothermal oxidation resistance during exposure at 800℃, but poorer resistance against oxidation at 900℃. By contrast Ti-48Al-12Cr coating demonstrated excellent isothermal oxidation resistance at both temperatures. Cyclic oxidation tests performed at 800℃ indicated that resistance and no spallation of coatings was observed. But both coatings demonstrated good cyclic oxidation at 900℃ only Ti-48Al-12Cr coating demonstrated excellent cyclic oxidation resistance. 展开更多
关键词 OXIDATION Ti-48Al coating Ti-48Al-12Cr coating High temperature titanium alloy
下载PDF
Microstructure and high-temperature wear properties of in situ TiC composite coatings by plasma transferred arc surface alloying on gray cast iron 被引量:1
4
作者 Hang Zhao Jian-jun Li +3 位作者 Zhi-zhen Zheng Ai-hua Wang Qi-wen Huang Da-wen Zeng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第12期1273-1282,共10页
In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) s... In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhard- ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual anstenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam- ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc- ture and to the presence of TiC particles. 展开更多
关键词 gray cast iron composite coatings particle-reinforced composites titanium carbide surface alloying MICROSTRUCTURE WEAR
下载PDF
Formation Mechanism of a Y-modified Cr-Al Coating Co-deposited on DZ125 Alloy and Its High-temperature Oxidation Resistance 被引量:1
5
作者 LI Yongquan LIANG Guodong +3 位作者 TIAN Xingda WANG Cunxi HE Ninghui QIN Chun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第2期270-276,共7页
Y-modified Cr-Al coatings were co-deposited on DZ125 alloy by a pack cementation process,and the microstructures,constituent phases,and formation mechanisms of the obtained coatings were studied.The oxidation resistan... Y-modified Cr-Al coatings were co-deposited on DZ125 alloy by a pack cementation process,and the microstructures,constituent phases,and formation mechanisms of the obtained coatings were studied.The oxidation resistance of the coatings was also investigated.The experimental results show that the coating prepared by co-depositing Cr-Al-Y at 1050℃for 2 h has a multi-layered structure with an outer layer composed of Cr and Ni_(3)Cr_(2),a middle layer composed of Ni_(3)Cr_(2) and Al_(13)Co_(4),and an inner layer composed of Ni_(3)Al.The co-deposited Y is mainly present in the outer and middle layers of the coating.The coating formation process follows a sequential deposition mechanism in which Al is deposited during the initial stage,followed by Cr deposition.After oxidation at 1100℃for 100 h,a dense Cr_(2)O_(3)·Al_(2)O_(3) scale forms on the obtained coating,which effectively protects the DZ125 alloy from oxidation by preventing the inward diffusion of oxygen. 展开更多
关键词 DZ125 alloy Y-modified Cr-Al coating coating formation oxidation resistance
下载PDF
Simple and scalable synthesis of super-repellent multilayer nanocomposite coating on Mg alloy with mechanochemical robustness,high-temperature endurance and electric protection
6
作者 Shuqi Wang Yaming Wang +4 位作者 Junchen Chen Yongchun Zou Jiahu Ouyang Dechang Jia Yu Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2446-2459,共14页
Multi-functionalization is the future development direction for protective coatings on metal surface,but has not yet been explored a lot.The effective integration of multiple functions into one material remains a huge... Multi-functionalization is the future development direction for protective coatings on metal surface,but has not yet been explored a lot.The effective integration of multiple functions into one material remains a huge challenge.Herein,a superhydrophobic multilayer coating integrated with multidimensional organic-inorganic components is designed on magnesium alloy via one-step plasma-induced thermal field assisted crosslinking deposition(PTCD)processing followed by after-thermal modification.Hard porous MgO ceramic layer and polytetrafluoroethylene(PTFE)nano-particles work as the bottom layer skeleton and filler components separately,forming an organic-inorganic multilayer structure,in which organic nano-particles can be crosslinked and cured to form a compact polymer-like outer layer with hierarchical surface textures.Remarkably,the chemical robustness after prolonged exposure to aqua regia,strong base and simulated seawater solution profits from polymer-like nanocomposite layer uniformly and compactly across the film bulk.Moreover,the self-similar multilayer structure coating endows it attractive functions of strong mechanical robustness(>100th cyclic rotary abrasion),stable and ultra-low friction coefficient(about 0.084),high-temperature endurance,and robust self-cleaning.The organic-inorganic multilayer coating also exhibits high insulating property with breakdown voltage of 1351.8±42.4 V,dielectric strength of 21.4±0.7 V/μm and resistivity of 3.2×10^(10)Ω·cm.The excellent multifunction benefits from ceramic bottom skeleton,the assembly and deposition of multidimensional nano-particles,and the synergistic effect of organic inorganic components.This study paves the way for designing next generation protective coating on magnesium alloy with great potential for multifunctional applications. 展开更多
关键词 Magnesium alloy Multifunctional multilayer coating Mechanochemical robustness Robust wettability high-temperature endurance
下载PDF
Effects of different pack aluminizing fillers on the aluminide coatings of Ti-6Al-4V alloy and their high-temperature oxidation behaviors
7
作者 ZHOU Wei,ZHAO Yuguang,and MEI Xuelian Key Laboratory of Automobile Materials of Ministry of Education,Department of Materials Science and Engineering,Jilin University,Changchun 130025,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期306-312,共7页
The aluminide coating process of Ti-6Al-4V alloys with different fillers(100wt.% Al_2O_3,50wt% Y_2O_3+50wt.% Al_2O_3 and 100wt.% Y_2O_3) for improvement of the oxidation resistance were investigated.The results show t... The aluminide coating process of Ti-6Al-4V alloys with different fillers(100wt.% Al_2O_3,50wt% Y_2O_3+50wt.% Al_2O_3 and 100wt.% Y_2O_3) for improvement of the oxidation resistance were investigated.The results show that the filler does not only participate in the aluminizing process,but also has much effect on the coating composition.The XRD analysis reveals that the aluminide coating with filler Al_2O_3 is predominant with TiAl_3 and TiAl phases;while the aluminide coatings with filler Y_2O_3+Al_2O_3 are predominant with Ti_3Al phase.The oxidation kinetics shows that different fillers affect greatly the oxidation resistance of aluminide coating,and the oxidation resistance of aluminized specimens with pack aluminizing filler Al_2O_3 are about 5-8 times than that of the aluminized specimens with other pack aluminizing fillers. 展开更多
关键词 Ti-6Al-4V alloy aluminide coating FILLERS OXIDATION
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:2
8
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Well-oriented magnesium hydroxide nanoplatelets coating with high corrosion resistance and osteogenesis on magnesium alloy 被引量:1
9
作者 Ya Shu Feng Peng +4 位作者 Zhi-Hui Xie Qiwen Yong Liang Wu Juning Xie Mei Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3292-3307,共16页
Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg... Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg(OH)_(2)layer,especially that formed in a natural condition,cannot provide desirable corrosion resistance in the community of corrosion and protection.Here,several Mg(OH)_(2)coatings were prepared by changing the pH values of sodium hydroxide solutions.These coatings were composed of innumerable nanoplatelets with different orientations and showed distinguished capability in corrosion resistance.The nanoplatelets were well-oriented with their ab-planes parallel to,instead of perpendicular to,the magnesium alloy surface by raising the pH value to 14.0.This specific orientation resulted in the optimal coating showing long-term corrosion protection in both in vitro and in vivo environments and good osteogenic capability.These finds manifest that the environment-friendly Mg(OH)_(2)coating can also provide comparable and better corrosion protection than many traditional chemical conversion films(such as phosphate,and fluoride). 展开更多
关键词 Magnesium alloy Corrosion coating Magnesium hydroxide BIOMATERIALS
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
10
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Adhesion property of AlCrNbSiTi high-entropy alloy coating on zirconium:experimental and theoretical studies
11
作者 Bao‑Liang Zhang Wen‑Guan Liu +5 位作者 Meng‑He Tu Can Fang Yan Liu Yu‑Hui Wang Yong Hu Hui Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期79-91,共13页
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep... Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development. 展开更多
关键词 High-entropy alloy coating Cr coating Adhesion property Scratch test First-principles calculation
下载PDF
Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying
12
作者 Yun Tian Jianing Liu +5 位作者 Mingming Xue Dongyao Zhang Yuxin Wang Keping Geng Yanchun Dong Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2692-2705,共14页
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega... FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines. 展开更多
关键词 high-entropy alloy coatings plasma spray mechanical alloying microstructure corrosion behavior mechanical property
下载PDF
Synergistic effect of Zr and Mo on precipitation and high-temperature properties of Al-Si-Cu-Mg alloys
13
作者 Chao Gao Bing-rong Zhang +2 位作者 Yin-ming Li Zhi-ming Wang Xiang-bin Meng 《China Foundry》 SCIE EI CAS CSCD 2024年第1期71-81,共11页
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,... This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy. 展开更多
关键词 Al-Si-Cu-Mg alloy high-temperature properties Zr-Mo-rich intermetallics nano-strengthening phases
下载PDF
Tribological Behaviors of Electroless Nickel-Boron Coating on Titanium Alloy Surface
14
作者 Yao Jia Jianping Lai +3 位作者 Jiaxin Yu Huimin Qi Yafeng Zhang Hongtu He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期309-320,共12页
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p... Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields. 展开更多
关键词 Electroless coating Titanium alloy TRIBOLOGY WEAR Heat treatment NANOINDENTATION
下载PDF
Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents
15
作者 Zhao-Qi Zhang Bing-Zhi Li +5 位作者 Pei-Duo Tong Shao-Kang Guan Li Wang Zheng-Hui Qiu Cun-Guo Lin Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期120-138,共19页
Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing comp... Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents. 展开更多
关键词 Magnesium alloy Corrosion resistance Hybrid coating ENDOTHELIALIZATION BIOCOMPATIBILITY
下载PDF
Antibacterial HA-coatings on bioresorbable Mg alloy
16
作者 K.V.Nadaraia D.V.Mashtalyar +13 位作者 M.A.Piatkova A.I.Pleshkova I.M.Imshinetskiy M.S.Gerasimenko E.A.Belov V.V.Kumeiko D.N.Kozyrev K.A.Fomenko V.V.Mostovaya B.R.Torpanov A.R.Biktimirov I.S.Osmushko S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1965-1985,共21页
In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S... In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S.aureus),was impregnated into the coating.Samples with vancomycin showed high bactericidal activity against S.aureus.The mechanical and electrochemical properties of the formed coatings were studied,as well as in vitro cytotoxicity tests and in vivo tests on mature male rats were performed.According to SEM,EDS,XRD and XPS data,coatings had a developed morphology and contained hydroxyapatite,which indicates high biocompatibility.The analysis of roughness of coatings without and with vancomycin did not reveal any differences,confirming the high roughness of the samples.During electrochemical tests,an increase in corrosion resistance by more than two times after the application of PEO coatings was revealed.According to the results of an in vivo study,after 28 days of the implantation of samples with calcium phosphate PEO coating and vancomycin,no signs of inflammation were observed,while an inflammatory reaction developed in the area of implantation of bare alloy,followed by encapsulation.Antibiotic release tests from the coatings show a sharp decrease in the concentration of the released antibiotic on day 7 and then a gradual decrease until day 28.Throughout the experiment,no significant deviations in the condition and behavior of the animals were observed;clinical tests did not reveal a systemic toxic reaction. 展开更多
关键词 Bioactive coatings BIOCOMPATIBILITY Mg alloy Plasma electrolytic oxidation Hydroxyapatite VANCOMYCIN
下载PDF
Advancements in enhancing corrosion protection of Mg alloys:A comprehensive review on the synergistic effects of combining inhibitors with PEO coating
17
作者 Arash Fattah-alhosseini Abdelhameed Fardosi +1 位作者 Minoo Karbasi Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期465-489,共25页
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica... Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments. 展开更多
关键词 INHIBITOR Mg alloy Self-healing coating Plasma electrolytic oxidation(PEO) Corrosion protection
下载PDF
Micro-aluminum powder with bi-or tri-component alloy coating as a promising catalyst:Boosting pyrolysis and combustion of ammonium perchlorate
18
作者 Chao Wang Ying Liu +6 位作者 Mingze Wu Jia Li Ying Feng Xianjin Ning Hong Li Ningfei Wang Baolu Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期100-113,共14页
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ... A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy. 展开更多
关键词 Micro-aluminum powder(μAl) Nano-sized alloy coating Combustion catalyst Ammonium perchlorate Pyrolysis behavior Ignition and combustion
下载PDF
Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating 被引量:8
19
作者 Yuefeng Su Feiyu Yuan +5 位作者 Lai Chen Yun Lu Jinyang Dong Youyou Fang Shi Chen Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期39-47,共9页
Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at eleva... Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future. 展开更多
关键词 Li-rich layered oxide Surface heterophase coating Crystalline/amorphous Li3PO4 high-temperature performance Voltage decay
下载PDF
High-temperature Compressive Performance of Mg Alloy Foams Coated with Ni-P Layer 被引量:4
20
作者 LU Xiaotong LUO Hongjie +2 位作者 ZHANG Zhigang DU Hao HUANG Wenzhan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第4期805-811,共7页
Mg/Ni hybrid foams were fabricated by the electroless method.The Ni-P(Nickel-Phosphorous)coatings were deposited on the surface of closed-cell Mg alloy foams.The composition,microstructure and phases of the Ni-P coati... Mg/Ni hybrid foams were fabricated by the electroless method.The Ni-P(Nickel-Phosphorous)coatings were deposited on the surface of closed-cell Mg alloy foams.The composition,microstructure and phases of the Ni-P coatings were characterized by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS)and X-ray diffraction(XRD),respectively.The compressive tests were performed on the Mg/Ni hybrid foams at 400℃using the Mg alloy foams as a reference.The experimental results show that the yield strength,plateau stress and energy absorption capacity of the closed-cell Mg alloy foams at high temperature were improved by the Ni-P coating.And there are four main modes for the Mg/Ni hybrid foam failure at 400℃,i e,shearing in cell wall,bending in cell edge,shedding and cracking in Ni-P coating. 展开更多
关键词 Mg alloy foams electroless plating high temperature compressive behavior Ni-P coating
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部