期刊文献+
共找到1,056篇文章
< 1 2 53 >
每页显示 20 50 100
Synergistic effect of Zr and Mo on precipitation and high-temperature properties of Al-Si-Cu-Mg alloys
1
作者 Chao Gao Bing-rong Zhang +2 位作者 Yin-ming Li Zhi-ming Wang Xiang-bin Meng 《China Foundry》 SCIE EI CAS CSCD 2024年第1期71-81,共11页
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,... This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy. 展开更多
关键词 Al-Si-Cu-Mg alloy high-temperature properties Zr-Mo-rich intermetallics nano-strengthening phases
下载PDF
On dry machining of AZ31B magnesium alloy using textured cutting tool inserts
2
作者 Shailendra Pawanr Kapil Gupta 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1608-1618,共11页
Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of... Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits. 展开更多
关键词 Magnesium alloy Dry machining Textured tools Flank wear SUSTAINABILITY
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:1
3
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Machine learning-guided accelerated discovery of structure-property correlations in lean magnesium alloys for biomedical applications
4
作者 Sreenivas Raguraman Maitreyee Sharma Priyadarshini +5 位作者 Tram Nguyen Ryan McGovern Andrew Kim Adam J.Griebel Paulette Clancy Timothy P.Weihs 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2267-2283,共17页
Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vi... Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials. 展开更多
关键词 Magnesium alloys machine learning Corrosion Mechanical properties Rapid characterization
下载PDF
Predicting grain size-dependent superplastic properties in friction stir processed ZK30 magnesium alloy with machine learning methods
5
作者 Farid Bahari-Sambran Fernando Carreno +1 位作者 C.M.Cepeda-Jiménez Alberto Orozco-Caballero 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1931-1943,共13页
The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and arti... The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios. 展开更多
关键词 machine learning Artificial intelligence Magnesium alloys SUPERPLASTICITY Friction stir processing Grain coarsening
下载PDF
Powder mixed electrochemical discharge process for micro machining of C103 niobium alloy
6
作者 Niladri Mandal Nitesh Kumar Alok Kumar Das 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期84-101,共18页
This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes... This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper. 展开更多
关键词 Micro-electrochemical discharge machining C103 niobium alloy Surface integrity Material removal rate Hybrid powder mixed ECDM
下载PDF
Accelerated prediction of Cu-based single-atom alloy catalysts for CO_(2) reduction by machine learning 被引量:1
7
作者 Dashuai Wang Runfeng Cao +5 位作者 Shaogang Hao Chen Liang Guangyong Chen Pengfei Chen Yang Li Xiaolong Zou 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期820-830,共11页
Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amo... Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amount of data.However,a unified understanding of underlying mechanism for further optimization is still lacking.In this work,combining first-principles calculations and machine learning(ML)techniques,we elucidate critical factors influencing the catalytic properties,taking Cu-based single atom alloys(SAAs)as examples.Our method relies on high-throughput calculations of 2669 CO adsorption configurations on 43 types of Cu-based SAAs with various surfaces.Extensive ML analyses reveal that low generalized coordination numbers and valence electron number are key features to determine catalytic performance.Applying our ML model with cross-group learning scheme,we demonstrate the model generalizes well between Cu-based SAAs with different alloying elements.Further,electronic structure calculations suggest surface negative center could enhance CO adsorption by back donating electrons to antibonding orbitals of CO.Finally,several SAAs,including PCu,AgCu,GaCu,ZnCu,SnCu,GeCu,InCu,and SiCu,are identified as promising CO_(2)RR catalysts.Our work provides a paradigm for the rational design and fast screening of SAAs for various electrocatalytic reactions. 展开更多
关键词 Cu-based single-atom alloy CO adsorption machine learning First principles CO_(2)reduction reaction
下载PDF
Constitutive Modeling for Ti-6Al-4V Alloy Machining Based on the SHPB Tests and Simulation 被引量:5
8
作者 CHEN Guang KE Zhihong +1 位作者 REN Chengzu LI Jun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期962-970,共9页
A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s 1. Flow stresses at high strain rate... A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s 1. Flow stresses at high strain rates are close to that of cutting are difficult to test via experiments. Split Hopkinson compression bar (SHPB) technology is used to study the deformation behavior of Ti-6Al-4V alloy at strain rates of 10 -4-10 4s- 1. The Johnson Cook (JC) model was applied to characterize the flow stresses of the SHPB tests at various conditions. The parameters of the JC model are optimized by using a genetic algorithm technology. The JC plastic model and the energy density-based ductile failure criteria are adopted in the proposed SHPB finite element simulation model. The simulated flow stresses and the failure characteristics, such as the cracks along the adiabatic shear bands agree well with the experimental results. Afterwards, the SHPB simulation is used to simulate higher strain rate(approximately 3 × 10 4 s -1) conditions by minimizing the size of the specimen. The JC model parameters covering higher strain rate conditions which are close to the deformation condition in cutting were calculated based on the flow stresses obtained by using the SHPB tests (10 -4 - 10 4 s- 1) and simulation (up to 3 × 10 4 s - 1). The cutting simulation using the constitutive parameters is validated by the measured forces and chip morphology. The constitutive model and parameters for high strain rate conditions that are identical to those of cutting were obtained based on the SHPB tests and simulation. 展开更多
关键词 constitutive model Ti-6Al-4V alloy SHPB test high strain rate machining
下载PDF
Review on non-conventional machining of shape memory alloys 被引量:8
9
作者 M.MANJAIAH S.NARENDRANATH S.BASAVARAJAPPA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期12-21,共10页
Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corro... Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions. 展开更多
关键词 non-conventional machining electrical discharge machining wire EDM shape memory alloys
下载PDF
Enhanced thermal stability and mechanical properties of high-temperature resistant Al-Cu alloy with Zr and Mn micro-alloying 被引量:7
10
作者 Teng-teng SUN Ji-wei GENG +5 位作者 Ze-yu BIAN Yi WU Ming-liang WANG Dong CHEN Nai-heng MA Hao-wei WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期64-78,共15页
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition... The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail. 展开更多
关键词 Al-Cu alloy micro-alloying thermal stability precipitate evolution high-temperature mechanical properties
下载PDF
Effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn heat-resistant alloy 被引量:6
11
作者 Heng-cheng LIAO He-ting XU Yi-yun HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1117-1126,共10页
The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of ... The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test. 展开更多
关键词 Al-Si-Cu-Mn heat-resistant alloy rare earth solidification process high-temperature strength
下载PDF
Dissolution Characteristics of New Titanium Alloys in Electrochemical Machining 被引量:3
12
作者 Chen Xuezhen Zhu Dong +2 位作者 Xu Zhengyang Liu Jia Zhu Di 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期610-619,共10页
We focus on the electrochemical dissolution characteristics of new titanium alloys such as near-αtitanium alloy Ti60,α+βtitanium alloy TC4andβtitanium alloy Ti40 which are often used for aerospace industry.The exp... We focus on the electrochemical dissolution characteristics of new titanium alloys such as near-αtitanium alloy Ti60,α+βtitanium alloy TC4andβtitanium alloy Ti40 which are often used for aerospace industry.The experiments are carried out by electrochemical machining tool,and the surface morphology of the specimens is observed by the scanning electron microscope(SEM)and three-dimensional video microscope(DVM).The appropriate electrolyte is selected and the relationships between surface roughness and current density are achieved.The results show that the single-phase titanium alloy Ti40 has a better surface roughness after ECM compared with theα+βtitanium alloy TC4 and the near-αtitanium alloy Ti60.The best surface roughness is Ra 0.28μm when the current density is 75A/cm2.Furthermore,the surface roughness of the near-αtitanium alloy Ti60 is the most sensitive with the current density because of the different electrochemical equivalents of substitutional elements and larger grains than TC4.Finally,the suitable current density for each titanium alloy is achieved. 展开更多
关键词 electrochemical machining(ECM) titanium alloy substitutional element electrochemical equivalent surface roughness
下载PDF
Microstructure and high-temperature mechanical properties of near net shaped Ti−45Al−7Nb−0.3W alloy by hot isostatic pressing process 被引量:4
13
作者 Hui-zhong LI Yi-xuan CHE +5 位作者 Xiao-peng LIANG Hui TAO Qiang ZHANG Fei-hu CHEN Shuo HAN Bin LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期3006-3015,共10页
Near net shaped Ti−45Al−7Nb−0.3W alloy(at.%)parts were manufactured by hot isostatic pressing(HIP).The microstructure and high-temperature mechanical properties of the alloy were investigated by X-ray diffractometry(X... Near net shaped Ti−45Al−7Nb−0.3W alloy(at.%)parts were manufactured by hot isostatic pressing(HIP).The microstructure and high-temperature mechanical properties of the alloy were investigated by X-ray diffractometry(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The results show that at a temperature of 700℃,the peak yield stress(YS)and ultimate tensile stress(UTS)of alloy are 534 and 575 MPa,respectively,and the alloy shows satisfactory comprehensive mechanical properties at 850℃.The alloy exhibits superplastic characteristics at 1000℃ with an initial strain rate of 5×10^−5 s^−1.When the tensile temperature is below 750℃,the deformation mechanisms are dislocation movements and mechanical twinning.Increasing the tensile temperature above 800℃,grain boundary sliding and grain rotation occur more frequently due to the accumulation of dislocations at grain boundary. 展开更多
关键词 TiAl alloy near net shape powder metallurgy high-temperature mechanical properties
下载PDF
Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review 被引量:3
14
作者 Ya Wei Yu Fu +5 位作者 Zhi-min Pan Yi-chong Ma Hong-xu Cheng Qian-cheng Zhao Hong Luo Xiao-gang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第6期915-930,共16页
High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials h... High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials has been pursued.Ni-based alloys are a common high-temperature material;however,they are too expensive.High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties.The recent achievements of high-temperature oxidation are reviewed in this paper.The high-temperature oxidation environment,temperature,phase structure,alloy elements,and preparation methods of high-entropy alloys are summarized.The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated.Current research,material selection,and application prospects of high-temperature oxidation are introduced. 展开更多
关键词 high-entropy alloy high-temperature oxidation influencing factors oxidation mechanism
下载PDF
A machine learning approach for accelerated design of magnesium alloys.Part B: Regression and property prediction
15
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4197-4205,共9页
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two... Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design. 展开更多
关键词 Magnesium alloys Digital alloy design Supervised machine learning Regression models Prediction performance
下载PDF
Brittle and ductile characteristics of intermetallic compounds in magnesium alloys: A large-scale screening guided by machine learning
16
作者 Russlan Jaafreh Yoo Seong Kang Kotiba Hamad 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期392-404,共13页
In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a ... In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a proxy-based method,where the ratio of shear(G)/bulk(B)moduli was used as a proxy to identify whether the compound is ductile or brittle.Starting from compounds information(composition and crystal structure)and their moduli,as found in open databases(AFLOW),ML-based models were built,and those models were used to predict the moduli in other compounds,and accordingly,to foresee the ductile-brittle behaviors of these new compounds.The results reached in the present work showed that the built models can effectively catch the elastic moduli of new compounds.This was confirmed through moduli calculations done by density functional theory(DFT)on some compounds,where the DFT calculations were consistent with the ML prediction.A further confirmation on the reliability of the built ML models was considered through relating between the DB behavior in MgBe_(13) and MgPd_(2),as evaluated by the ML-predicted moduli,and the nature of chemical bonding in these two compounds,which in turn,was investigated by the charge density distribution(CDD)and electron localization function(ELF)obtained by DFT methodology.The ML-evaluated DB behaviors of the two compounds was also consistent with the DFT calculations of CDD and ELF.These findings and confirmations gave legitimacy to the built model to be employed in further prediction processes.Indeed,as examples,the DB characteristics were investigated in IMCs that might from in three Mg alloy series,involving AZ,ZX and WE. 展开更多
关键词 Mg alloys Intermetallic compounds Ductile-brittle machine learning Algorithm Features DFT
下载PDF
Micro electrical discharge machining of small hole in TC4 alloy 被引量:3
17
作者 LI Mao-sheng CHI Guan-xin +2 位作者 WANG Zhen-long WANG Yu-kui DAI Li 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期434-439,共6页
Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency a... Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency and decrease relative wear of electrode in machining deeply small hole in TC4 alloy,many factors in micro-EDM,such as polarity,electrical parameters and supplying ways of working fluid were studied.Experimental results show that positive polarity machining is far superior to negative polarity machining;it is more optimal when open-circuit voltage,pulse width and pulse interval are 130 V,5μs and 15μs respectively on the self developed multi-axis micro-EDM machine tool;when flushing method is applied in micro-EDM,the machining efficiency is higher and relative wear of electrode is smaller. 展开更多
关键词 TC4 alloy micro electrical discharge machining deeply small hole multi-axis micro-EDM machine tool
下载PDF
A machine learning approach for accelerated design of magnesium alloys. Part A:Alloy data and property space
18
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3620-3633,共14页
Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more i... Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more importantly it does not harness all the data that exists in the field. In this work, a new approach is proposed that utilises data science and provides a detailed understanding of the data that exists in the field of Mg-alloy design to date. In this approach, first a consolidated alloy database that incorporates 916 datapoints was developed from the literature and experimental work. To analyse the characteristics of the database, alloying and thermomechanical processing effects on mechanical properties were explored via composition-process-property matrices. An unsupervised machine learning(ML) method of clustering was also implemented, using unlabelled data, with the aim of revealing potentially useful information for an alloy representation space of low dimensionality. In addition, the alloy database was correlated to thermodynamically stable secondary phases to further understand the relationships between microstructure and mechanical properties. This work not only introduces an invaluable open-source database, but it also provides, for the first-time data, insights that enable future accelerated digital Mg-alloy design. 展开更多
关键词 MAGNESIUM alloy design Mg-alloy database Data analysis Data visualisation Unsupervised machine learning
下载PDF
Microstructure of fast tool servo machining on copper alloy 被引量:1
19
作者 Hong LU Soo-chang CHOI +1 位作者 Sang-min LEE Deug-woo LEE 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期820-824,共5页
The development of the fast tool servo (FTS) for precision machining was investigated.The micron machining performance of a piezoelectric-assisted FTS on copper alloy was evaluated.The results indicate that the qualit... The development of the fast tool servo (FTS) for precision machining was investigated.The micron machining performance of a piezoelectric-assisted FTS on copper alloy was evaluated.The results indicate that the quality of the microstructure depends mainly on two important factors:the cutting speed (or spindle speed) and the driving frequency of the FTS.The excessive driving frequency increases the formation of burrs.The effect of the clearance angle of the diamond tool on the microstructure machining precision was also investigated. 展开更多
关键词 fast tool SERVO MICROSTRUCTURE PIEZOELECTRIC DIAMOND machining COPPER alloy
下载PDF
Electrical discharge machining of 6061 aluminium alloy 被引量:2
20
作者 A.PRAMANIK A.K.BASAK +1 位作者 M.N.ISLAM G.LITTLEFAIR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2866-2874,共9页
The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studi... The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper. 展开更多
关键词 wire electrical discharge machining(EDM) 6061 aluminium alloy material removal rate kerf width surface finish
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部